Можно ли подключить светодиод к сети 220 вольт

Подключение светодиода к 220В

Светодиоды в качестве источников света получили широкое распространение. Но они рассчитаны на низкое напряжение питания, а зачастую возникает необходимость включить светодиод в бытовую сеть 220 вольт. При небольших познаниях в электротехнике и умении выполнять несложные расчеты это возможно.

  • Способы подключения
    • Подключение с помощью резистора
    • Последовательное подключение диода с высоким обратным напряжением (400 В и более)
    • Шунтирование светодиода обычным диодом
    • Встречно-параллельное подключение двух светодиодов
    • С помощью конденсатора
  • Пример включения светодиода в выключатель света
  • Техника безопасности

Способы подключения

Стандартные условия работы большинства светодиодов – напряжение 1,5-3,5 В и ток 10-30 мА. При пряом включении прибора в бытовую электросеть время его жизни составит десятые доли секунды. Все проблемы подключения светодиодов в сеть повышенного, по сравнению со штатным рабочим, напряжения, сводятся к тому, чтобы погасить излишек напряжения и ограничить ток, протекающий через светоизлучающий элемент. С этой задачей справляются драйверы – электронные схемы, но они достаточно сложны и состоят из большого числа компонентов. Их применение имеет смысл при питании светодиодной матрицы со множеством светодиодов. Для подключения одного элемента есть более простые пути.

Подключение с помощью резистора

Самый очевидный способ – подключить последовательно со светодиодом резистор. На нем упадет лишнее напряжение, и он ограничит ток.

Расчет этого резистора ведется в такой последовательности:

  1. Пусть имеется светодиод с номинальным током 20 мА и падением напряжения 3 В (фактические параметры надо посмотреть в справочнике). За рабочий ток лучше принять 80% от номинала – LED в облегченных условиях проживет дольше. Iраб=0,8 Iном=16 мА.
  2. На добавочном сопротивлении упадет напряжение питающей сети за вычетом падения напряжения на светодиоде. Uраб=310-3=307 В. Очевидно, что практически все напряжение будет на резисторе.

Важно! При расчетах надо применять не действующее значение напряжения сети (220 В), а амплитудное (пиковое) – 310 В.

  1. Значение добавочного сопротивления находится по закону Ома: R=Uраб/ Iраб. Так как ток выбран в миллиамперах, то сопротивление будет в килоомах: R=307/16= 19,1875. Ближайшее значение из стандартного ряда – 20 кОм.
  2. Чтобы найти мощность резистора по формуле P=UI, надо рабочий ток умножить на падение напряжения на гасящем сопротивлении. При номинале в 20 кОм средний ток будет составлять 220 В/20 кОм=11 мА (здесь можно учитывать действующее напряжение!), и мощность составит 220В*11мА=2420 мВт или 2,42 Вт. Из стандартного ряда можно выбрать резистор мощностью 3 Вт.

Важно! Этот расчет упрощенный, в нем не везде учтено падение напряжения на светодиоде и его сопротивление в открытом состоянии, но для практических целей точность достаточная.

Так можно подключать цепочку из последовательно соединенных светодиодов. При расчетах надо умножить падение напряжения на одном элементе на их общее количество.

Последовательное подключение диода с высоким обратным напряжением (400 В и более)

У описанного способа есть существенный недостаток. Светодиод, как любой прибор на основе p-n перехода, пропускает ток (и светится) при прямой полуволне переменного тока. При обратной полуволне он заперт. Его сопротивление велико, намного выше балластного сопротивления. И сетевое напряжение амплитудой 310 В, приложенное к цепочке, упадет большей частью на светодиоде. А он не рассчитан на работу в качестве высоковольтного выпрямителя, и может довольно скоро выйти из строя. Для борьбы с этим явлением часто рекомендуют последовательно включать дополнительный диод, выдерживающий обратное напряжение.

На самом деле при таком включении приложенное обратное напряжение разделится примерно пополам между диодами, и LED будет чуть легче при падении на нем около 150 В или немного меньше, но судьба его будет все равно печальной.

Шунтирование светодиода обычным диодом

Намного более эффективна такая схема включения:

Здесь светоизлучающий элемент включен встречно и параллельно дополнительному диоду. При отрицательной полуволне дополнительный диод откроется, и все напряжение окажется приложенным к резистору. Если расчет, проведенный ранее, был верным, то сопротивление не будет перегреваться.

Встречно-параллельное подключение двух светодиодов

При изучении предыдущей схемы не может не прийти мысль – зачем использовать бесполезный диод, когда его можно заменить таким же светоизлучателем? Это верное рассуждение. И логически схема перерождается в следующий вариант:

Здесь в качестве защитного элемента использован такой же светодиод. Он защищает первый элемент при обратной полуволне и при этом излучает. При прямой полуволне синусоиды светодиоды меняются ролями. Плюсом схемы является полное использование возможностей источника питания. Вместо одиночных элементов можно включать цепочки светодиодов в прямом и обратном направлениях. Для расчета можно использовать тот же принцип, но падение напряжения на светодиодах умножается на их количество, установленное в одном направлении.

С помощью конденсатора

Вместо резистора можно применить конденсатор. В цепи переменного тока он ведет себя в определенной мере как резистор. Его сопротивление зависит от частоты, но в бытовой сети этот параметр неизменен. Для расчета можно взять формулу Х=1/(2*3,14*f*C), где:

  • X – реактивное сопротивление конденсатора;
  • f – частота в герцах, в рассматриваемом случае равна 50;
  • С – емкость конденсатора в фарадах, для пересчета в мкФ использовать коэффициент 10 -6 .

На практике используют формулу:

  • С – необходимая емкость в мкФ;
  • Iраб – рабочий ток светодиода;
  • U-Uд – разница между напряжением питания и падением напряжения на светоизлучающем элементе – имеет практическое значение при применении цепочки светодиодов. При использовании одного светодиода можно с достаточной точностью принять значение U равным 310 В.

Применять конденсаторы можно с рабочим напряжением не менее 400 В. Расчетные значения для токов, характерных для подобных схем, приведены в таблице:

Рабочий ток, мА10152025
Емкость балластного конденсатора, мкФ0,1440,2150,2870,359

Получившиеся значения достаточно далеки от стандартного ряда емкостей. Так, для тока 20 мА отклонение от номинала 0,25 мкФ составит 13%, а от 0,33 мкФ – 14%. Резистор можно подобрать гораздо точнее. Это является первым недостатком схемы. Второй уже упоминался – конденсаторы на 400 и выше В имеют довольно крупные размеры. И это еще не все. При использовании балластной емкости схема обрастает дополнительными элементами:

Сопротивление R1 устанавливается в целях безопасности. Если схему запитать от 220 В, а потом отключить от сети, то конденсатор не разрядится – без этого резистора цепь разрядного тока будет отсутствовать. При случайном касании выводов емкости легко получить поражение электрическим током. Сопротивление этого резистора можно выбрать в несколько сотен килоом, в рабочем состоянии он зашунтирован емкостью и на работу схемы не влияет.

Резистор R2 нужен для ограничения броска зарядного тока конденсатора. Пока емкость не заряжена, она не будет служить ограничителем тока, и за это время светодиод может успеть выйти из строя. Здесь надо выбрать номинал в несколько десятков Ом, на работу схемы он также не будет иметь влияния, хотя его можно учесть при расчете.

Пример включения светодиода в выключатель света

Один из распространенных примеров практического использования светодиода в цепи 220 В – индикация выключенного состояния бытового выключателя и облегчения поиска его местоположения в темноте. Светодиод здесь работает при токе около 1 мА – свечение будет неярким, но заметным в темноте.

Здесь лампа служит дополнительным ограничителем тока при разомкнутом положении выключателя, и возьмет на себя небольшую долю обратного напряжения. Но основная часть обратного напряжения приложена к резистору, поэтому светодиод здесь относительно защищен.

Видео: ПОЧЕМУ НЕ НАДО СТАВИТЬ ВЫКЛЮЧАТЕЛЬ С ПОДСВЕТКОЙ

Техника безопасности

Технику безопасности при работе в действующих установках регламентируют Правила охраны труда при эксплуатации электроустановок. На домашнюю мастерскую они не распространяются, но их основные принципы при подключении светодиода к сети 220 В надо учесть. Главное правило безопасности при работе с любой электроустановкой – все работы надо выполнять при снятом напряжении, исключив ошибочное или непроизвольное, несанкционированное включение. После отключения выключателя отсутствие напряжения надо проверить тестером. Все остальное – применение диэлектрических перчаток, ковриков, наложение временных заземлений и т.п. трудновыполнимо в домашних условиях, но надо помнить, что мер безопасности мало не бывает.

Как подключить светодиоды к 220 В электрической сети

В этой статье рассмотрим принципы самого простого подключения любых светодиодов к сети 220 В переменного напряжения. Схемы, плюсы и минусы

Достаточно часто нам приходится сталкиваться с таким вопросом – как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто – ставим ограничительный резистор и забываем. Светодиод как работал “в прямом направлении” так и будет работать. Резисторы любого номинала, а также наборами можно купить в этом магазине буквально за копейки и с бесплатной доставкой!

  • Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод – вариант 1
  • Подключение LED по простой схеме с резистором и диодом – вариант 2
  • Расчетная часть схемы
  • Минусы использования схемы подключения светодиодов к 220 В по варианту 2
  • Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В
  • Минусы подключения по 3 варианту
  • Подключение светодиода на 220 В с использованием диодного моста – 4 вариант
  • Недостатки схемы подключения по 4 варианту
  • Как подключить светодиод к 220 В используя конденсатор
  • Подключение светодиода к сети 220 В на примере выключателя с подсветкой
  • Видео на тему подключения светодиода к сети 220 В

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так – муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже. На нашем сайте есть уже подготовленный калькулятор расчета резистора для светодиода.

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод – вариант 1

Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.

Подключение LED по простой схеме с резистором и диодом – вариант 2

Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода – VD1. Как только в схему “попадает” отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод LED1 (при этом прямое падение напряжения на светодиоде LED1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода LED1).

Расчетная часть схемы

Номинальное напряжение сети:

Принимается минимальное и максимальное напряжение сети (опытные данные):

Принимается к установке светодиод LED1, имеющий максимально допустимый ток:

Максимальный расчетный амплитудный ток светодиода LED1:

ILED1.АМПЛ.МАКС = 0,7*ILED1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде LED1(опытные данные):

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/ILED1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС 2 /RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС 2 /RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

ILED1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мА
ILED1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

Обратное напряжение диода VD1:

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 В
IVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

Минусы использования схемы подключения светодиодов к 220 В по варианту 2

Главные недостатки подключения светодиодов по этой схеме – малая яркость светодиодов, за счет малого тока. ILED1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В

При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.

Расчет параметров схемы аналогичен второму варианту. Кому надо – посчитает и сравнит. Разница небольшая.

Минусы подключения по 3 варианту

Если самые “пытливые умы” уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень – придется поверить на слово. Минус такого подключения – также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего ILED1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

Подключение светодиода на 220 В с использованием диодного моста – 4 вариант

Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 В
IVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

Недостатки схемы подключения по 4 варианту

Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Читайте также:  Как очистить потолок от клея потолочной плитки и снять: демонтаж и выравнивание

Однако при такой схеме мы получим заметное увеличение яркости светодиода: LED1: ILED1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

Как подключить светодиод к 220 В используя конденсатор

Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент – конденсатор. На схеме – C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.

Подключение светодиода к сети 220 В на примере выключателя с подсветкой

Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки – не понятно.

Видео на тему подключения светодиода к сети 220 В

Ну и в конце всего длинного поста посмотрим видео на тему : “как подключить светодиоды к 220 В”. Для тех, кому лень все читать было.

Выбор источника питания для светодиодов

Запись дневника создана пользователем Лифтанутый, 31.03.12
Просмотров: 26.215, Комментариев: 27

Для того, чтобы включить светодиод, можно использовать привычный источник постоянного напряжения – аккумулятор, батарейку, зарядное устройство и пр.

Для питания светодиодных светильников, также как и для других электроприборов, требуется обычная электрическая сеть, которая присутствует в любой квартире в виде розетки.
Всем известно словосочетание ” 220 вольт”. Нам больше информации не нужно. Если написано 220В – значит в розетку можно включать.
Для светодиодов тоже есть блоки питания на 220В. Сегодня есть самые разные конструкции светодиодов, которым нужно разное питание. Например светодиодные ленты и модули требуют напряжение постоянного тока 12В или 24В, значит источником может служить любой блок питания, который переменное 220В преобразует в постоянное напряжение 12В. ( как в автомобиле). Такие устройства мы часто встречаем в быту. Они питают разные гаджеты, их еще называют сетевыми адаптерами.
Можно использовать БП от компьютера, предварительно упаковав его в изолированный корпус.

Но мощные растительные светодиоды правильнее и удобнее питать специальными источниками но не напряжения , а источниками тока -драйверами. Название это придуманно маркетологами, это полезно, оно позволяет отличить их от простого блока питания. Внешне их можно отличить от блоков питания только по маркировке (!)
Запомните: драйвер – источник стабильного постоянного тока. (именно тока , а не напряжения!)

Ток светодиода – его важнейший параметр и его нужно обязательно соблюдать. Наши одноваттные светодиоды обычно имеют в паспорте указание о номинальном токе 350мА, 700мА и т.д. Это не значит, что он не может работать при других токах – может. Но если ему дать ток выше номинального -он будет светить намного ярче, но из-за перегрева его срок службы сократится. Планируется появление более мощных светодиодов, у которых номинальный рабочий ток будет другим, намного больше.
Поэтому не надо превышать номинальный ток, а правильнее даже чуть занизить его до 320мА. Это обеспечит сохранение ресурса длительное время 50000часов, за счет неперегрева кристалла.
Простейший драйвер – это резистор, который включается последовательно со светодиодом , ограничивает ток и «гасит» избыток напряжения, преобразуя проходящий ток в тепло. Однако неэкономично!
Мощные светодиоды так подключать можно, но очень неудобно – нужны мощные резисторы. Для них нужно свое место крепления и пр. Если нужна головная боль – используйте резисторы и обычные источники стабилизированного напряжения.
Исправный драйвер ни при каких условиях не выдаст больше тока, чем нужно – как бы вы не подключали диоды .

Но драйверов уже стало много, они похожи на электронные трансформаторы для галогенок и продавцы не всегда компетентны – поэтому надо внимательно смотреть его этикетку- шильдик. Там должны быть указаны параметры входного напряжения и выходного.
Рассмотрим такие этикетки-шильдики.

На фото два драйвера во влагозащищенных корпусах. (Бывают вообще без корпуса – не берите, если не имеете достаточного опыта). Оба драйвера обеспечивают ток 320мА. Оба работают от сети 220 В ( 100-240V). Верхний драйвер позволяет подключить 30- 40штук одноваттных светодиодов, а нижний от 5 до 12шт. Информация о пределах выходного напряжения драйвера является самой важной, она показывает сколько светодиодов можно подключить в цепь ( это суммарное падение напряжения для всей цепи)

Для чего это нам? Эта информация нужна для предварительной проверки возможности драйвера запитать определенное количество светодиодов с учетом цвета кристалла. Падение напряжения на светодиоде зависит от типа кристалла. Напомню, что для красных -это 1,8-2,1Вольта, а для синих, зеленых и белых – это 3-3,5Вольта.

Например, мы хотим засветить 5 красных светодиода. Если соединим их в цепь – получим суммарное напряжение на концах цепи 5 х 2 = 10Вольт. На нижнем драйвере написано 5-12 штук, а напряжение минимум 15Вольт. Нельзя недогружать драйвер! Маловато 5 штук, еще надо хотя бы 3штуки (8штХ 2В= 16В). Если бы это были синие 5шт, то напряжение цепи5х3 = 15В – подходит.

Именно потому, что светильник состоит из разных по цвету светодиодов – нужно сначала подсчитать суммарное падение напряжения на всей цепи и только тогда выбирать драйвер. Напряжение нашей светодиодной цепи должно быть в пределах выходного напряжения, указанного на этикетке драйвера. Если вы не попадаете в указанные пределы – тогда придется добавить лишние или убавить рассчитанное ранее количество светодиодов. Это в случае, когда нельзя подыскать другой драйвер.

Из практики: если вы правильно все посчитали, а светильник “моргает” светодиодами – значит ему нехватает нагрузки. Придется добавить светик- другой. Я добавляю зеленые – они здорово улучшают восприятие глазом, хотя растениям от этого немного пользы.

Никогда не загружайте драйвер до верхнего предела мощности- это ведет к его перегреву и снижению надежности, ведь внешняя среда непредсказуема. Вдруг жарко станет на кухне от предпраздничной жарки – варки и он перегреется. капут, однако может быть.
Если вам попадется драйвер на больший ток, например 700мА- его можно использовать для светиков на 350мА, но тогда придется сделать две параллельные светодиодные цепи, либо отдельные светики включать попарно. При этом возможны неприятности – если один светодиод сгорит ( не было ни разу), то вторая цепь окажется под удвоенным током, но будет продолжать работать с увеличенной яркостью пока вы не вмешаетесь:

Будьте внимательны – есть драйверы, подключаемые к источникам низкого напряжения 12V, 24V – это указано в этикетке. А выходные напряжения у них могут быть такими же, как и у сетевых.

Дополнение. Кроме одноватных есть и другие светодиоды: 3,5,10 ватт и далее. На драйвере указаны пределы суммарной мощности. Например, верхний драйвер (30-40вТ) может запитать или 30шт одноваттных или 10шт трехваттных и т.п. Главное не уйти за пределы этих параметров.
примечание светодиодные драйвера можно включать параллельно на одну
нагрузку. Это дает возможность быстро увеличивать мощность светового потока
светодиодного светильника за счет увеличения – уменьшения силы тока. (В разумных пределах, конечно.)

Например рассада стала тянуться – увеличиваем ток вдвое через синие
светодиоды. При номинальном токе 350мА (если теплоотвод хороший) , это возможно однако
это уже снижает ресурс долговечности.

Можно для этой цели использовать дополнительный светильник, который
питается дополнительным драйвером только на время интенсивного торможения
рассады томатов.

ПРЕДУПРЕЖДЕНИЯ:

1. включение -выключение драйвера( ов) должно быть только в сетевом проводе
(220В), а не на выходе к светодиодам.
Нельзя коммутировать вторичную цепь драйвера-могут выйти из строя светодиоды.

2. Не забудьте заранее увеличить площадь теплоотвода для светодиодов, при
использовании дополнительного тока. И хорошо “утеплите”
Номенклатура доступных драйверов непрерывно расширяется. Многие
российские заводы начали поставлять “свои” драйвера собранные из китайских
полуфабрикатов – это конечно радует. Но при этом стали попадаться
драйвера по привлекательной цене, в характеристиках которых не указаны очень
важные для электробезопасности сведения. Нам с вами не обязательно знать
электрическую схему драйвера, но степень защиты от поражения электрическим
током зависит именно от нее. Об этом подробнее.

Если в схеме есть трансформатор ( у него две обмотки и более) – то
он гальванически отделяет сеть от светодиодов (нет электрической связи между
проводами 220В и проводами для подключения светодиодов!).
А если вместо трансформатора ( для экономии), стоит дроссель с двумя
обмотками, то никакого гальванического разделения входной и выходной цепей
не будет! На самом деле, для профессионалов, ничего страшного в этом нет.
Такие драйвера можно использовать для светильников, висящих на недоступной
высоте. В таких конструкциях предусматривают невозможность связи
светодиодов с корпусом и есть надежное заземление!

Но использовать такие драйвера для самодельных светильников досветки растений ОПАСНО для
ЖИЗНИ. потому что фазный провод может быть гальванически связан с
металлическим каркасом светильника. И рядом вода, жена и дети!
Поэтому, приобретая драйвера, обязательно интересуйтесь наличием гальванической развязки.

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока – розетки, которая есть в любой благоустроенной квартире.
Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).
Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт.
Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль – это КЛ101А или КЛ101Б.
Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(. как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Читайте также:  Как сделать балдахин над кроватью своими руками: пошаговые инструкции + фото и видео

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье “Драйвер для светодиодов (светодиодной лампы)”.

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений – первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Можно ли подключить светодиод к сети 220 вольт

Принцип понижения напряжения питания для светодиода

Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.



Подключение к низкочастотному блоку питания

К низкочастотному блоку питания подключение светодиодов (схема показана ниже) может осуществляться только в сети с постоянным током. При этом резисторы используются открытого типа. В данном случае минимум мощность светодиода обязана составлять 5 В. Усилитель для него можно подобрать операционного типа. Если рассматривать модели с драйверами, то они припаиваются часто вместе с проходными конденсаторами.

В данном случае параметр проводимости тесно связан с их емкостью. Для усиления чувствительности прибора многие эксперты советуют использовать широкополосные преобразователи. В данном случае адаптеры для борьбы с помехами не подходят. Однако различные фильтры устанавливать имеет смысл. Дополнительно следует отметить, что регуляторы в цепи можно использовать как поворотного, так и кнопочного типа.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах). Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт. Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль — это КЛ101А или КЛ101Б. Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения устройств к компьютеру

К компьютеру подключение светодиодов может осуществляться по-разному. Как правило, конденсаторы с этой целью применяются только фазового типа. В данном случае резисторы могут использоваться открытые, однако пороговое напряжение они обязаны выдерживать не ниже 5 В. Дополнительно следует обращать внимание на частотность светодиода.

Если рассматривать стандартные модели, то они соединяются с блоками питания через усилители. При этом резисторы обязаны располагаться в конце цепи. Если рассматривать мощные светодиоды, то для них потребуется интегральный усилитель. В данном случае драйвера приветствуются с высоким покрытием. Проводимость устройства зависит исключительно от мощности блока питания. Непосредственно соединения светодиода происходит в данном случае через сетевой фильтр.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

(…как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Ошибки подключения светодиодов

  • Первая ошибка — это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
  • Вторая ошибка — это подключение к общему резистору светодиодов, установленных параллельно. Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды. Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.
  • Третья ошибка — это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот — работать на износ.
  • Четвертая ошибка — это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы. Причина этому — дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.
  • Пятая ошибка — включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов — примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
  • Шестая причина — это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Использование демпфирующих конденсаторов

Подключение светодиодов с демпфирующими конденсаторами подразумевает использование блоков питания на 15 В.. При этом резисторы применяются только открытого типа. В итоге параметр отрицательного сопротивления в цепи не превышает 30 Ом. Также следует учитывать, что светодиоды могут использоваться только малой мощности. Непосредственно конденсаторы устанавливаются возле блоков питания. В данном случае для нормальной работы устройства усилители не требуются.

За счет высокой чувствительности моделей их пороговое напряжение — не менее 15 В.. При этом максимальная нагрузка зависит от мощности светодиодов. Драйвера для моделей, как правило, подбирают широтного типа. Решить проблему с отрицательной полярностью в такой ситуации можно довольно просто. Фильтры с этой целью следует устанавливать за усилителями. Также в данном случае с проблемой помогут справиться интегральные тетроды.

Подключение нескольких светодиодов к 220 вольтам

Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье «Драйвер для светодиодов (светодиодной лампы)».

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)
Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений — первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

Онлайн калькулятор для расчета номинала и мощности токоограничивающего резистора
Напряжение источника питания U, В:
Напряжение падения на одном LED, В:
Кол-во последовательно включенных LED, шт:
Максимально допустимый ток через LED, мА:

Безопасность при подключении

В случае подключения светодиодов к сети 220 В нужно учитывать тот факт, что выключатель светильника полностью размыкает фазный провод. Ноль прокладывается общий на комнату. Часто в электрической сети нет заземления, поэтому угрозу представляет нулевой провод, имеющий определенное напряжение относительно земли.

Иногда заземляющий провод соединяется с батареями отопления или трубами, поэтому, если человек прикоснется одновременно к батарее и фазе, то может попасть под напряжением.

По данной причине при монтаже к сети желательно отключать и нулевой, и фазный провода, используя специальную автоматику, что позволяет избежать поражения током.

Главные нюансы при построении цепи с подключением светодиодных осветительных приборов к сети 220 В связаны с выбором подходящего по параметрам гасящего резистора или конденсатора. Переменный ток в розетке может оказывать разрушительное действие на все полупроводники, пропускающие электричество исключительно в одном направлении. При грамотном ограничении амплитуды тока и расчете нужного амортизационного запаса цепь будет полностью защищена от выгорания и короткого замыкания, что обеспечит долговечность и надежность.

Как сделать сетку-рабицу непрозрачной?

  1. Зачем нужно закрывать сетку?
  2. Какие растения можно посадить вдоль забора?
  3. Используем сетки и маты
  4. Другие варианты
  5. Рекомендации

Сетка-рабица позволяет быстро поставить забор на участке, но у нее есть один недостаток – она прозрачная. Многих это не устраивает, поэтому владельцы загородных домов стараются усовершенствовать незатейливую конструкцию. Существует несколько методов, с помощью которых можно сделать ограждение непрозрачным.

Зачем нужно закрывать сетку?

Забор из рабицы в достаточной мере выполняет свои функции. Он защищает границы территории, легко монтируется и не требует сложного ухода. В наличии отверстий есть свои плюсы – они пропускают воздух и солнечный свет, что может быть полезно для растений. Однако есть ряд причин, по которым владельцы все же решают сделать сетку-рабицу непрозрачной.

  • Желание иметь приватную территорию. Далеко не всем нравятся внимание соседей и любопытство случайных прохожих. Люди хотят иметь возможность расслабиться и отдохнуть со своей семьей или с друзьями, не беспокоясь о том, что подумают окружающие. Также ограждение немного снизит уровень внешнего шума – это актуально, если по дороге постоянно проезжают автомобили.
  • Необходимость в защите от ветра. Сильные порывы могут навредить молодым кустарникам и другим посадкам. Более плотный забор поможет сохранить растения в целости. Кроме того, ветер может заносить на территорию разный мелкий мусор и пыль, эту проблему ограждение тоже решит.
  • Стремление украсить участок. Сетка выглядит довольно скучно, а то и вовсе портит вид, если поблизости владельцы разбили клумбы с цветами и не пожалели сил на оформление входной группы. Можно преобразить и забор, чтобы он соответствовал выбранному дизайну.
Читайте также:  Как разделать налима

Ниже представлен ряд способов, с помощью которых вы сможете затемнить сетку. Некоторые дают практически полную непрозрачность, другие оставляют небольшие отверстия, поэтому можно подобрать оптимальный вариант на любой вкус.

Какие растения можно посадить вдоль забора?

Живая изгородь – интересное решение. Растения украсят участок и одновременно затенят сетку. Если нужен быстрый результат – можно посадить ипомею, которая хорошо разрастается уже в течение месяца. Также есть и другие варианты, заслуживающие внимания.

  • Хвойные деревья и туя. Нужно запастись терпением, поскольку они будут расти не один год, но зато потом встанут плотной стеной, защищающей от любопытных взглядов и слишком яркого солнца.

  • Гортензии. Если на вашем участке кислая почва, то они хорошо разрастутся и будут радовать красивыми цветами.

  • Девичий виноград. Вьющееся растение, которое можно пустить по сетке или любой вертикальной стенке. За 3-4 года можно получить плотную изгородь.

  • Шпалерные розы. Еще один вьющийся кустарник, которому также потребуется несколько лет, но зато потом он раскроется во всей красе. Цветы подарят приятный аромат.

Помимо этого, садоводы могут посадить клематис, плющ, хмель, древогубец. Все это – вьющиеся растения, которые будут постепенно оплетать поверхность. Также на первое время можно использовать цветы в горшках и поддонах, закрепив их на заборе. Это не прикроет конструкцию полностью, но позволит немного разнообразить вид.

Стоит учесть, что живая изгородь нуждается в уходе. Даже если вы подберете неприхотливое растение, на первых порах оно будет требовать внимания. Некоторые кустарники нужно обрезать и обрабатывать, чтобы они не теряли привлекательный вид, удобрять и защищать от вредителей. Убедитесь, что почва и другие условия подходят для выбранного вами растения, иначе все усилия могут быть напрасны.

Кроме того, живая изгородь с кустарниками и цветами будет радовать вас только в теплое время года, ведь осенью листья опадают. Но вы также можете высадить вечнозеленые хвойные деревья, чтобы решить этот вопрос. Если вариант с растениями вам не подходит, то можно затенить ограждение с помощью разных материалов.

Используем сетки и маты

Камуфляжное полотно поможет быстро решить проблему. Маскировочная сетка легко монтируется и надежно защищает от любопытных взглядов. Вариант с капроновым основанием – более прочный, но если нужно сэкономить, то можно приобрести полотно без основы. В продаже встречаются разные цветовые модификации с камуфляжной окраской, но все они не слишком яркие. Затеняющие сетки имеют более насыщенные оттенки, поэтому можно использовать их для оформления забора. Кроме того, можно выбрать не только подходящий тон, но и плотность – от полупрозрачной до практически полного затенения.

Оригинальным вариантом могут быть тростниковые или бамбуковые маты. Они продаются в готовых рулонах, которые можно монтировать на рабицу. Ограждение получается достаточно крепким и непрозрачным. Маты пропитаны специальным составом, который защищает их от воздействия солнечных лучей и температурных перепадов, поэтому такой забор может прослужить несколько лет.

Другие варианты

Обратите внимание на искусственную хвою, которая также продается в рулонах и чем-то напоминает затеняющую сетку, однако, она более пушистая и плотная. Можно прикрепить полотно к забору своими руками и расположить так, чтобы закрыть только низ сетки, либо полностью замаскировать рабицу. Стоит отметить, что этот вариант не слишком долговечный, его хватит на один сезон, потом материал потеряет вид.

Можно собрать конструкцию из поликарбоната. Его часто используют для установки теплиц на даче, но и для забора он тоже подойдет. В продаже есть непрозрачные и полупрозрачные листы различных цветов, что позволяет сделать ограждение, которое будет гармонично сочетаться с общим дизайном территории.

Поликарбонат бывает монолитным и сотовым. Последний чаще используют для теплиц, поскольку он легче, но при этом эффективно удерживает тепло. Для изгороди такое свойство не требуется, а монолитный материал стоит дешевле, поэтому целесообразно будет выбрать его. Есть еще несколько интересных способов, при помощи которых можно закрыть забор от соседей на дачном участке.

Вышивка и плетение тесьмой

Этот вариант потребует времени и терпения, но результат будет действительно впечатляющим, если дать волю творческому началу. В качестве материала можно использовать толстые нитки, шнуры для плетения, полоски тканей, нарезанные из старых вещей, и даже полиэтиленовые пакеты. Узор может быть любым, в зависимости от вашей фантазии. Лучше предварительно нарисовать эскиз на бумаге, чтобы он был перед глазами в процессе работы.

Нитки или шнуры оплетаются вокруг сетки так, чтобы получился определенный рисунок. Можно накладывать их в несколько слоев, если вы хотите получить полотно без зазоров. Также вы можете связать крючком или спицами отдельные небольшие элементы, например, цветы и пришить их к общей композиции в качестве дополнительного декора.

Стоит отметить, что красота не продержится долго – на нитках и тесьме оседает пыль, а почистить их сложно. Также они начнут выцветать от солнца, портиться под влиянием осадков. Забор будет радовать глаз не больше одного сезона, потом его придется обновлять.

Профлист

Если вы приобрели участок с готовым ограждением и пока не хотите от него избавляться, можно просто закрепить листы сверху. Для этого нужно предварительно проделать в них отверстия, а затем зафиксировать при помощи прочной толстой проволоки. Листы дают полную непрозрачность, защищают от любопытных соседей и резкого ветра. Можно подобрать материал нужного размера и цвета.

Обычно профлисты делают из оцинкованной стали, поэтому они не нуждаются в дополнительной обработке. Им не страшны атмосферные воздействия и перепады температур, не требуется специальный уход. Запылившийся забор без проблем моется обычной водой. При аккуратном обращении листы можно будет использовать повторно, если вы через несколько лет решите разобрать изгородь.

Камыш

Этот вариант будет самым экономичным. Если поблизости растет камыш, можно использовать его для оформления забора. Такой способ потребует времени – нужно подготовить стебли, а потом продеть их сквозь ячейки, чтобы получилось цельное полотно. Зато ограждение будет натуральным и недорогим, кроме того, камыш хорошо будет смотреться практически с любым дизайном территории.

Проблема природного материала в его недолговечности, но опытные дачники придумали замену – пластиковые ламели. Это тонкие рейки, которые, как и стебли камыша, нужно продевать между ячейками, как при плетении циновки. В отличие от растения, пластик не боится сырости, осадков и солнечных лучей, поэтому он прослужит дольше.

Рекомендации

Все перечисленные методы оформления можно разделить на сезонные и более долговечные. При выборе стоит это учитывать. Владельцы участков, планирующие потом поменять забор, могут высадить однолетнее растение-вьюнок в качестве живой изгороди, закрепить искусственную хвою или камыш. Если вы не хотите убирать сетку, то лучше обратить внимание на более прочные и устойчивые материалы – поликарбонат, профлист, бамбуковые маты.

Некоторые методы оформления можно сочетать между собой. Например, прикрепить затеняющую сетку, а поверх нее сделать плетеный рисунок из ниток или тесьмы. Такое ограждение будет более плотным и при этом оригинальным. Если на вашем участке вдоль забора посажены цветы или разбиты грядки, не используйте полностью непрозрачные материалы. Растениям нужен солнечный свет, они не могут постоянно находиться в тени.

Вне зависимости от выбранного метода оформления, желательно, чтобы забор сочетался с общим дизайном участка. Можно подобрать материалы с подходящими оттенками, использовать повторяющиеся узоры и рисунки для декорирования парадной стороны дома и ограждения.

Как задекорировать сетку-рабицу, смотрите в видео.

10 способов сделать забор из рабицы или других материалов непрозрачным

Забор из сетки-рабицы монтируется легко и быстро, к тому же стоит недорого. Это ограждение практически не создаёт тени и легко пропускает солнечные лучи, необходимые для жизнедеятельности растений. Однако не ограждает он и от любопытных взоров соседей, а также проходящих мимо людей. Хорошо, что есть много способов сделать его непрозрачным.

Как сделать непрозрачным забор из рабицы или других материалов

Сделать сетчатое заборное ограждение непрозрачным и защитить свою частную жизнь от посторонних глаз можно несколькими способами. Рассмотрим несколько наиболее популярных.

Плетущиеся растения

Самое естественное и первое, что напрашивается само собой, это высадить у забора вьющиеся растения, которые оплетут сетку свои плетями. Некоторые однолетники (ипомея, вьюн и пр.) способны сделать это достаточно быстро. Высаженные в начале мая растения, уже к концу июня покроют собой прозрачную рабицу. Но живут такие культуры тоже недолго, через месяц-полтора листва редеет и желтеет.

Такая зелёная стена будет непрозрачной летом, а не весь год

Многолетники, такие как клематис, девичий (дикий) виноград, китайский лимонник развиваются не столь быстро, для создания плотных зарослей им потребуется несколько лет.

Стена из девичьего винограда летом надёжно укроет от посторонних глаз, а осенью ещё и станет главным украшением участка

Из минусов подобного ограждения можно отметить тот факт, что с потерей листвы, а это неизбежно, она теряет декоративность, а участок опять становится доступным для любопытствующих.

Живая изгородь

Создать плотную живую стену можно из кустарников. Для этих целей подойдут:

  • шиповник;
  • пузыреплодник;
  • миндаль;
  • жасмин (чубушник);
  • барбарис;
  • ежевика;
  • кизильник и пр.

Однако за таким забором необходим постоянный уход (поливать, подкармливать и пр.). Чтобы он выглядел презентабельно и аккуратно, его требуется регулярно постригать.

Живая изгородь надёжно защитит от любопытных взоров

Сохраняют свою декоративность круглый год зелёные насаждения из хвойников (кипарис, туя, ель, тис, можжевельник и пр.). Но растут они достаточно медленно.

Наш участок с двух сторон огорожен ажурным забором из металлического прутка. По одной из них, отступив внутрь около метра, я высадила кусты сирени. Только на пятый год эти насаждения стали реально что-то загораживать. Кустарник стригу обычно весной, пока ещё не раскрылись листья, но почки уже набухли. Процесс довольно трудоёмкий, поскольку приходится не только подравнивать ветки, но и кропотливо вырезать погибший за зиму молодняк.

Маскировочная сетка

Очень быстро добиться нужного эффекта можно при помощи маскировочной сетки, такую часто используют военные. Имеется большой выбор материалов различной плотности, обеспечивающих определённый процент тени, а также разные оттенки (от светло-зелёных до тёмно-коричневых) и расцветки.

Маскировочные сетки бывают разных расцветок

Более долговечными будут сети, изготовленные на капроновой основе.

Сетка для затенения

Уменьшить просматриваемость участка помогут специальные затеняющие сетки, которые применяются для защиты растений от палящего солнца. Они изготавливаются в различных оттенках зелёного цвета, имеют разную плотность и, соответственно, разную пропускную способность для солнечного света (от 30 до 90%).

Декорировать рабицу можно затеняющей защитной сеткой для растений

Очень красиво смотрится мелкоячеистая полимерная фотосетка, с внешней стороны на неё нанесён рисунок.

Специальная заборная лента

Можно просто купить несколько рулонов пластиковой ленты, она называется заборной и специально производится для того, чтобы быстро создавать плетение на заборе.

Оплести такой лентой можно и металлический, и деревянный забор

Причем тип плетения можно сделать не только шахматным, так что при творческом подходе выглядеть такой забор будет весьма достойно.

В качестве примера можно взять ткацкие плетения

Искусственная хвоя

Используя искусственную хвою, которая продаётся метражом, можно быстро украсить забор из рабицы и сделать его менее прозрачным. Проволоку с синтетическими хвоинками продевают в ячейки вертикально или горизонтально. Однако оригинальный декор довольно быстро теряет яркость, поскольку выгорает на солнце.

Декоративная искусственная хвоя тоже подойдёт для затенения забора

Габионы

По сути это отдельный тип забора: между двумя металлическими «сетками» насыпаются камни. Сооружение потребует сил и затрат, но и стоять такой забор будет не один сезон.

Многим современным дизайнерам и хозяевам участков габионы по душе

Поликарбонат

Хорошим вариантом сделать сетчатый забор непросматривающимся будет использование непрозрачных или полупрозначных поликарбонатных листов, которые устанавливаются с внутренней стороны. Поликарбонат долговечен, а различные цветовые решения позволят гармонично сочетать его с другими дачными строениями.

Даже прозрачный поликарбонат сильно снижает просматриваемость забора

Камыш или подобные вертикальные «рейки» из пластика

Стебли камыша, продетые сквозь прутья сетки, помогут закрыть забор практически бесплатно. Правда, служить такой природный материал долго не будет, но его всегда можно поменять. Натуральная конструкция отлично вписывается в дизайн любого сада, всегда смотрится оригинально и привлекательно.

Через крупную ячею можно пропускать различные материалы (пластиковые ламели, узкие деревянные штакетины и пр.).

Вышивка

Оригинальную вышитую ограду получают, оплетая сетку верёвками, цветной проволокой, скотчем и даже пластиковыми пакетами. При этом создаётся определённая красочная композиция.

В качестве основы может послужить скачанная из интернета схема для вышивки крестиком.

Маты из тростника или камыша

Неординарный дизайн ограждения создаётся уже готовыми камышовыми, бамбуковыми или тростниковыми матами, в которых стебли растений связаны между собой и обработаны специальными защитными составами. Рулонный материал нужно просто раскатать, растянуть между столбиками и закрепить.

Можно купить готовые маты из бамбука

Подручные материалы

Декорировать невзрачную сетку и попутно сделать её менее проницаемой помогут всевозможные подручные материалы. Бутылки от напитков, а также разноцветные крышечки от них, ненужные CD диски, растения в цветочных горшках (вертикальное озеленение), цветные пластиковые стаканчики — в дело идёт всё.

На сетку можно крепить старые ненужные диски

Видео: делаем сетку-рабицу непрозрачной

Отзывы

Мы как раз щас этим занимаемся, именно к сетке рабице привязываем тростник сплетенный в циновку, рулонами продаётся в ОБИ в ЕС, думаю что нечто подобное есть и в РФ, рулоны высотой от 150 до 200 см, ширина от 3 до 6 метров, стоят 3 копейки, есть такие же рулоны только из ивовых прутьев, стоят дороже но зато прочнее. Ещё видела в том же ОБИ зелёную маскировочную сетку для заборов, или можно натянуть маскировочную сетку для рыболовов и военных, такая знаете, сетка с листиками, типа маскировка от врага.

Anonymous

https://eva.ru/house-and-hobby/messages-3117610.htm

Посадите вдоль забора топинамбур (земляную грушу). Он неприхотлив, быстро разрастается и достаточно декоративен. Кроме этого получите ценный диетический овощ в изобилии, не прикладывая особых усилий. Его можно выкапывать поздней осенью и ранней весной (до появления побегов).

shavlia

http://hodremonta.ru/forum/viewtopic.php?t=6087

Если не хотите заниматься живыми растениями и сетка не подходит, есть в продаже искусственные вьющиеся растения, вариант конечно не плохой, да и в уходе проблем меньше чем с живыми растениями.

Ким Чен Ын [321K]

http://www.remotvet.ru/questions/6911-chem-mozhno-zadekorirovat-zabor-iz-setki-rabicy.html

Существует великое множество вариантов, как огородиться от любопытных соседей и прохожих, уменьшив прозрачность забора из рабицы. Далеко не все из них требуют серьёзных финансовых вложений, в большинстве случаев поможет фантазия и умение работать руками.

Оцените статью
Добавить комментарий