Какой диаметр бревна нужен для бани в зависимости от использования

Бревно для сруба бани: выбор типа и диаметра

Сруб — это традиционная конструкция бани, применяемая издревле. От правильности выбора диаметра бревен зависит долговечность сооружения и комфорт его эксплуатации. Оптимальный размер пиломатериала должен определяться, исходя из ряда факторов.

Выбор типа бревна

В настоящий момент для возведения срубов могут использоваться следующие виды пиломатериалов:

  • Простое ошкуренное бревно, сооружения из которого имеют традиционный внешний вид. Основное достоинство материала — защищенность сердцевины за счет сохранности верхнего слоя.
  • Строганное бревно обладает красивой текстурой и светлым оттенком за счет обработки ручными рубанками. Имеет высокую стоимость и требует применения защитных составов.
  • Оцилиндрованное бревно, благодаря использованию при производстве специального оборудования, обладает гладкой поверхностью и одинаковым диаметром по всей длине. Недостатки аналогичны минусам строганного пиломатериала.
  • Брус с квадратным сечением имеет демократичную стоимость. Сооружения из него имеет гладкие ровные стены. Недостаток — сложность сборки, требующей подгонки каждого элемента на стройплощадке.

Совет! Независимо от выбранного типа пиломатериала, необходима его обработка специальными составами для увеличения долговечности и эстетической привлекательности строения.

Что влияет на выбор диаметра бревна?

Стандартно для бань выбирается пиломатериал размером 20-36 см. Оцилиндрованные бревна имеют меньший на 1 см диаметр, чем необработанные, которые измеряются вместе с корой.

Факторы, учитываемые при выборе пиломатериала:

  • Температура воздуха в регионе в зимнее время;
  • Периодичность использования бани;
  • Размер сруба;
  • Технология сушки.

Совет! Для строительства в средней полосе России желательно выбирать хвойные породы деревьев, выросшие в северных регионах. Такой материал обладает большей плотностью и меньшим влагопоглощением, что, соответственно, увеличивает срок службы сооружения.

Зависимость от зимней температуры в регионе:

Максимальная температура зимой

Рекомендуемый диаметр бревна, см

*Для средней полосы сечение должно быть в пределах 22-30 см.

Для одноэтажной бани на дачном участке, используемой исключительно летом, достаточно бревен диаметром 18-20 см. Постройка не требует сооружения мощного фундамента и может быть возведена своими руками. Такое здание быстро прогревается, но сохраняет тепло непродолжительное время.

Баня для круглогодичной эксплуатации строится из бревна диаметром минимум 24 см. Фундамент требуется монолитный или массивный ленточный.

Важно! При использовании для строительства пиломатериала большого диаметра необходимо привлечение помощников или спецтехники.

Двухэтажную баню или здание с мансардой прогревать сложнее, поэтому для снижения теплопотерь и увеличения несущей способности стен, их строят из бревна диаметром минимум 25 см.

Технология сушки древесины отражается на ее влажности, от которой зависит степень усадки сооружения, составляющая:

  • Пиломатериал природной влажности, полученный ручной рубкой — минимум 15 см;
  • Зимний лес и естественная сушка — не меньше 4-6 см;
  • Оцилиндрованное бревно камерной сушки — 3 см.

Этот параметр необходимо учитывать при проектировании высоты строения и подсчете количества требуемой древесины.

Советы по приобретению и заготовке пиломатериала

Бревна не должны иметь поражений насекомыми и механических повреждений. Выбирать следует прямые, без кривизны стволы, имеющие наименьшее расхождение диаметров торцов — до 3 см. Для пиломатериалов длиной более 3 метров принимают допустимое отклонение 1 см на 1 погонный метр.

Важно! Трудоемкость работ, а также стоимость сруба, прямо пропорциональна толщине бревен — чем она больше, тем сложнее вести строительство и тем дороже оно обойдется.

Самостоятельная заготовка бревен:

  • Самостоятельную рубку леса производят в зимнее время, когда древесина имеет влажность до 10-12% – это обеспечивает минимальную усадку здания и дает возможность использовать материал с меньшим сечением.
  • При выборе стволов к расчетному диаметру бревен добавляет 1 см на последующую обработку.
  • При использовании электро- или бензопилы требуется учитывать, что после похождения этих инструментов обработанная поверхность получается значительно взлохмаченной, в результате чего она сильнее подвержена гниению. Для предупреждения этого мастера рекомендуют не доходить до разметки 5-10 мм, спиливать древесину между предварительно выполненными поперечными надпилами и чистовую теску выполнять топором.
  • Для строительства применяют свежеспиленные бревна, которые легче поддаются обработке. Такая древесина после высыхания в уложенном срубе меньше деформируется и растрескивается.
  • После удаления коры пиломатериал укладывают штабелем, помещая между слоями для организации циркуляции воздуха бруски. Бревна складируют под навесом или накрывают влагонепроницаемым материалом, защищающем также от прямых солнечных лучей. Сушка длится две недели, после чего начинают рубку сруба. Пересушенная древесина плохо поддается обработке.
  • Для уменьшения растрескивания бревен на фасадах в каждом из них с противоположной продольному пазу стороне выполняют надпилы. Их глубина должна составлять до ¼ диаметра пиломатериала. Эти надпилы предназначены для компенсации внутренних напряжений, возникающих при процессах увлажнения и высыхания под воздействием атмосферных факторов, и, как следствие, предотвращения возникновения трещин.

Грамотный выбор и заготовка леса для строительства позволяет получить долговечную, теплую и эстетически привлекательную баню.

Толщина бревна для бани: критерии выбора и конкретные цифры

Выбор толщины бревна для бани – важный этап проектирования и строительства, влияющий на многие моменты. Во-первых, от этого зависит, сможете ли вы пользоваться парной в зимнее время или только летом. Во-вторых, диаметр бревна непосредственно влияет на стоимость строительства. В-третьих, от выбора материала зависит эстетичность постройки. Разберем все эти нюансы поподробнее.

Критерии выбора бревна для бани

Итак, выбирать диаметр бревен для строительства бани следует, исходя из следующих критериев:

  • сезонность эксплуатации;
  • размеры постройки;
  • бюджет.

Первый пункт влияет на выбор материала больше всего, потому на нем стоит сосредоточить свое внимание особенно. Размер бани – сугубо индивидуальный критерий. Постройка может быть как маленькой (4×4 м), так и очень большой. И диаметр сруба играет тут немаловажную роль. Ну и, наконец, бюджет – как правило, далеко не резиновый, и довольно часто принуждает чем-то жертвовать.

Сезонность эксплуатации бани и максимальные морозы

Пойдем от простого к сложному. Сначала разберемся со случаем, когда баня строится, например, на даче, которую вы посещаете только в теплое время года, так как там нету дома для постоянного проживания (или по другим причинам). Для летней эксплуатации выбор диаметра бревна не очень важен, и в большинстве случаев опирается только на имеющиеся средства и здравый смысл. Вполне достаточно будет и 150-миллиметрового сруба, и еще менее толстого. Удовольствие от принятия банный процедур это никак не снизит. А вот бюджет – еще как.

Другое дело, если баня планируется не только для лета, но и для холодных зим. В таком случае ориентироваться нужно, в первую очередь, на местные климатические условия. Самый простой метод – выбор толщины бревна по минимально низкой температуре воздуха. Например, если зимой морозы не больше -20°C, то для строительства всесезонной бани подойдет бревно диаметром от 180 мм до 200 мм. Соответственно, если температура опускается ниже, то стоит рассматривать варианты с бревном от 200 мм до 240мм.

В целом, бревно диаметром 200 мм считается в средней полосе России золотой серединой для строительства бань. Следует помнить, что это, все-таки, не жилой дом, и требования к теплоизоляционным свойствам здесь не такие высокие. Потому смотреть в сторону бревна толщиной 36-50 см – особо не стоит. Хотя из этого правила есть и исключения.

Размеры бани

В некоторых случаях бревно подбирается не только с учетом местных морозов, но и по размерам самой постройки. И этому есть несколько причин.

Во-первых, большая двухэтажная баня со всевозможными зонами и функциональными помещениями будет выглядеть не совсем гармонично, если ее построить из слишком тонкого бревна. Для таких зданий следует брать более толстое бревно. И не только с точки зрения эстетики.

Это будет во-вторых – большая постройка имеет значительный вес и дает соответствующие нагрузки на несущие стены с фундаментом. Чтобы здание было надежным, не покосилось и не начало разваливаться в течение ближайших лет, бревно для его строительства нужно подбирать потолще.

Бюджет на строительство бани

Что же делать тем, у кого на бревно достаточного диаметра банально не хватает средств. Из этой ситуации есть несколько простых и безболезненных выходов. Первый – сокращайте размеры проекта, удаляя из него необязательные зоны, а также оптимизируйте по максимуму пространство. Так вы сможете построить теплую баню из бревна нужного диаметра, которую можно будет использовать всесезонно.

Второй выход – использовать современные технологии. Обязательно заделывайте стыки между бревнами специальными уплотнителями. Если уже смотреть на вопрос с этой стороны, то никто не отменял закладку утеплителя под внутреннюю обшивку, тем более что в парной это и так придется делать.

Cруб 9 на 10 — дом из бревна

« Довольно скверно! Опять старая история! Окончив постройку дома,замечаешь, что при этом незаметно научился кое-чему, что непременно нужнобыло знать, прежде чем начинать постройку. Вечное несносное «слишком поздно»!…»По ту сторону добра и зла. Фридрих Ницше
.

Темка, скорее всего, получится короткая, но я думаю полезная не только для тех, кто собирается строить свой дом из оцилиндрованного , но и из бревна ручной рубки.

Уникальные свойства бревна, как экологически чистого, долговечного и надежного материала подтверждены вековым опытом использования его в качестве материала для строительства жилища.

Тот, кто серьёзно подходит к вопросу строительства дома из дерева найдут для себя много преимуществ и в оцилиндрованном бревне и в бревне ручной рубки.

Строительство деревянных домов из оцилиндрованного бревна, благодаря высокой степени заводской готовности и обработке элементов сруба дома в трех плоскостях, осуществляется в самые сжатые сроки (подобно конструктору) и обходится дешевле, чем сруб ручной рубки. При этом качество венцовых сочленений будет, несомненно, выше, чем при ручной рубке, а об Непримиримых, беззаветно влюбленных в «верхний самый-самый защитный слой древесины», под названием заболонь, .

Здесь я хотел бы рассмотреть только один аспект выбора, а именно выбор диаметра бревна для сруба, точнее – соотношение размеров ширины венцового паза и диаметра бревна. А чуть позже, так же и форму этого самого паза.

Большинство компаний производят оцилиндрованное бревно с шириной венцового паза равной половине диаметра бревна, что является минимальным соотношением предусмотренным , и диктуется, прежде всего тем, что в производстве это проще, расход материала на сруб меньше, стоимость сруба ниже и, как следствие, позволяет позиционировать свою продукцию как более конкурентную в ценовом отношении. Для застройщика же должен быть более важен вопрос: «А что же я получу за свои деньги в плане потребительских качеств, помимо самого диаметра бревна?»

Как прочность всей цепи определяет ее слабое звено, так и из бревна определяет, в основном, не толщина (диаметр) выбранного бревна, а слабое место, а именно — .

Существует ли оптимальное соотношение между денежными затратами (кубатурой бревна на сруб) и соотношением ширины паза к диаметру бревна, которые бы обеспечивали одинаковые теплозащитные качества стены?

Безусловно, существует и оно, достаточно просто.

Если посмотреть на рисунок, ширина паза B

, эффективная высота бревна в срубе
H
и диаметр бревна
D
связаны формулами известными каждому еще с начальных классов школы.

При увеличении ширины паза эффективная высота бревна в срубе (высота венца) уменьшается. Ширина паза увеличивается пропорционально косинусу, а высота — синусу угла. До определенного значения, а именно до 45 гр., ширина паза увеличивается быстрее, чем уменьшается высота бревна, т. е. это происходит до достижения значения ширины паза и высоты бревна равным 0,707*D.

На самом деле за счет того, что бревно «работает» по толщине стены в плане теплозащиты не только шириной паза, а всем своим сечением, это соотношение несколько иное, и при более строгом расчете оптимальная ширина паза составляет приблизительно 2/3 диаметра, при этом высота бревна в срубе составит – 3/4 диаметра. Для сравнения — стандартные на рынке домостроения величины – 0,5 и 0,87 диаметра соответственно.

Читайте также:  Какие печи длительного горения с водяным контуром лучше

Что это нам дает? — В переводе на русский язык: За счет оптимального соотношения диаметр/паз одна и та же в теплотехническом отношении стена будет обходиться застройщику почти на 20% дешевле.

Популярность оцилиндрованного бревна в отечественном домостроении обусловлена тем, что позволяет собрать классический русский сруб, какой ставили наши предки, используя рубленое бревно. Новые технологии внесли свои коррективы в заготовку и характеристики бревна, сделав процесс строительства более технологичным и быстрым, а возведенный дом более элегантным, с ровными венцами и отсутствием щелей.

Рассмотрим подробно свойства и технические характеристики оцилиндрованного бревна, что это такое, какие виды и типы бывают, габариты, параметры, плюсы и минусы, как делают и используют в частном строительстве.

Лампа натриевая (ДНаТ) особенности и характеристики

Лампы ДНаТ

Среди источников света есть лампы ДНаТ – Дуговая Натриевая Трубчатая лампа. Сейчас осветительные приборы на этом типе ламп постепенно приобретают статус «пенсионеров». Но отправляться им на покой пока еще рано. Этот тип источника света прост, и надежен. Тот факт, что он до сих пор не снят с производства также говорит о его востребованности. Конечно, есть и недостатки, но без них никуда.

Натриевые лампы низкого давления были сконструированы в тридцатые годы. С 1960 года они практически полностью сняты с производства металлогалогеновыми. Развитие этих газоразрядных источников света протекало практически одинаково и в СССР, и в Европе.

Основная функция – освещение улиц, освещение агрокультур (научно — досветка). Но они также применяются и для освещения спортивных залов, иногда ими освещают подземные переходы.

Они получили мировое признание и были осветителем номер один для улиц и автомобильных трасс и дорог. Сейчас у них появился очень сильный конкурент в лице светодиодов. До сих пор, бывалые проектировщики до сих пор применяют именно эту технологию. Этому есть логичное объяснение:

  • ДНаТ дешевле. Диодное освещение реально дороже.
  • Светодиоды, конечно, более энергоэффективны, но не сильно выигрывают у газоразрядных ламп.
  • Качество светодиодных светильников неизвестных фирм сомнительно.
  • Лампа натриевая имеет больший срок полезной эксплуатации. Многие производители (можно насчитать не один десяток) для повышения яркости дают светодиодам предельный ток, тем самым сокращая срок полезной эксплуатации.
  • Разработаны лампы мощностью до 4 кВт при светоотдаче до 160 лм/Вт.

Частно ДНаТ можно встретить на производственных предприятиях. Но, чаще применяется освещение комбинированного типа в связке с металлогалогенными лампами (МГЛ). Это добавляет свету «теплоты». Если посмотреть терминологию, то более верно их называть НЛВД – натриевая лампа высокого давления, либо High-Pressure Sodium Lamp. В постсоветском пространстве устоялась аббревиатура ДНаТ. Во времена СССР ДНаТ выпускались многими заводами.

Классификация натриевых ламп

Натриевые источники света имеют два подтипа:

  • Низкого давления (НЛНД).
  • Высокого давления (НЛВД).

Лампы низкого давления не обрели популярности и сейчас уже не применяются, хотя они характеризуются лучшими показателями энергоэффективности. Самый большой их недостаток – очень плоха цветопередача, вплоть до того, что невозможно идентифицировать настоящий цвет освещаемого предмета. Не исключено неправильное восприятие формы объекта.

Лампы высокого давления, напротив, несмотря на свой длительный стаж в освещении еще востребованы. На них имеется спрос. Они классифицируются на три типа:

  • ДНат (обычная дуговая натриевая лампа).
  • ДНаЗ – тот же ДНаТ, но меньшей мощности и с напылением зеркального слоя на внутренней поверхности стенки колбы. Это отражатель для увеличения светоотдачи.
  • ДРИЗ, ДРИ — Дуговая Ртутная с Излучающими добавками и Дуговая Ртутная с Излучающими добавками и Зеркальным слоем.

Область применения

Обычно, этот тип газоразрядных ламп используется в случаях, когда более важны именно экономические показатели, а не точная цветопередача. Это является общепринятым мнением. По этой причине ДНаТ не подходят для освещения жилых помещений и производственных цехов. Такое освещение является опасным, так как существенно растет риск травматизма.

Довольно часто эти источники света находят применение не только для уличного и тепличного освещения, но и для подсветки архитектурных комплексов и памятников. В Москве их применение – традиционно. Обратите, на желтовато-оранжевую подсветку в центре мегаполиса. Сейчас некоторые производители совершенствуют эти лампы, уже удалось достичь приемлемых показателей цветопередачи (индекс Ra). Максимальный спрос приходится на мощности в 250 и 400 Вт.

Не так давно появилось новое поколение маломощных натриевых ламп с Ra=80. Это весьма близко к спектру ламп накаливания, т.е. ее вполне можно использовать для световой декорации в местах общественного пользования.

Многие садоводы рекомендую применять НЛВД именно на последних фазах роста саженцев. В модификациях, предназначенных под тепличное использования в спектре свечения, появились добавки для синей части спектрального состава света. На ранних сроках такое освещение способствует тому, что побеги начинают усиленно расти, стебли быстро и удлиняются. При применении ДНаТ-ламп в аграрном хозяйстве следует обращаться с ними чрезвычайно бережно, так как разбитая либо взорвавшаяся колба поставит крест на урожае.

Применяются они и при ландшафтном дизайне. Их свечением можно имитировать открытый огонь или цвет солнца во время заката.

Устройство натриевых ламп

Внешне эти лампы имеют сходство с ДРЛ. Внешний корпус — баллон цилиндрической формы из стекла, но бывает и в форме эллипса. В нем расположена «горелка» — трубка, внутри которой происходит дуговой разряд. Электроды расположены с ее торцов. Они соединены с цоколем. Натрий не применяется при изготовлении «горелки», так как его пары довольно сильно воздействуют на стеклянный корпус. Кроме того, внешняя колба играет еще и роль «термоса» — изолирует горелку от внешней окружающей среды.

На рисунке упоминается геттер. Он редко упоминается в справочной документации. Геттер – это газопоглотитель, адсорбер. Он способен улавливать и удерживать газ за исключением инертных. Он находит свое применение не только в газоразрядных лампах, но и в радиоэлектронике – электровакуумных приборах. Его основная функция– увеличение срока службы. Отсутствие посторонних веществ снижает «отравление» электродов.

Сама горелка изготовлена из поликора – поликристаллической окиси алюминия. Ее получают путем спекания. Причем только альфа-форма кристаллической решетки приемлема для изготовления корпуса разрядной трубки. Она характеризуется максимальной плотностью «упаковки атомов». Это разработка фирмы General Electric. Разработчик назвал этот материал «лукалос». Он устойчив к парам натрия и пропускает около 90 процентов видимого излучения. К примеру, днат 400 имеет трубку длиной 8 сантиметров, диаметром 7.5 миллиметров. С увеличение мощности увеличивается размер «горелки». Электроды изготовлены из молибдена. Кроме натрия в парообразной форме, закачан инертный газ – аргон. Он требуется для облегчения образования разряда. Для улучшения светоотдачи вводят ртуть и ксенон. При работе лампы температура в горелке достигает 1200-1300 кельвинов. Около 1300 0 по шкале Цельсия. Для предотвращения повреждении из колбы выкачивается воздух. Вакуум достаточно сложно поддерживать, так как при температурном расширении могут появляться микроскопические щели и отверстия. Через них может заходить воздух. Для устранения этого используются специальные прокладки. Колба разогревается не так сильно, как горелка. Обычная температура – 100 0 С. В свечении выражены оранжевый, желтый, золотистый цвета.

Ранее лампы имели только круглый резьбовой цоколь, как у бытовых ламп накаливания. Однако, недавно появился новый тип цоколя – Double Ended.

Вне зависимости от конструкции спектра будет примерно одинаков.

В основном, этот тип ламп используется агропредприятиями. Они, как правило, тоньше в два раза, чем стандартное исполнение натриевой лампы. Колба изготовлена из кварца. Внутри колбы находится азот. Горелка имеет два электрода для подачи импульса и последующего питающего напряжения для поддержания разряда. Выводы расположены с торцов лампы, это более совершенное решение, позволяющее избежать термической деформации колбы.

Разработаны ДНаТ-лампы и с двумя горелками.

Разновидность, представленная на фото, как правило, используется для тепличного размещения (в целях досветки). Вторая горелка – это металлогалогеновая лампа. По сути, эта модель представляет собой гибрид ДНаТ и МГЛ в едином корпусе.

Но существуют и модели, в которых находится пара идентичных горелок. Они находятся в общем баллоне и соединены параллельно. Делается это для поочерёдного использования каждой из газоразрядных трубок. Во время работы только одна излучает свет. Зажигается именно та, где будут более подходящие условия. Такое решение позволяет снизить общие эксплуатационные расходы. В остальном варианты с одной или двумя трубками не имеют никаких принципиальных различий, параметры мощности и светового потока будут одни и те же. Принципиальные схемы не изменяются.

Принцип действия и схема подключения лампы ДНаТ

Внутри горелки поддерживается дуговой разряд. Для его появления применяется ИЗУ. Расшифровывается эта аббревиатура — импульсное зажигающее устройство. При включении схемы лампа получает импульс от 2 до 5 кВ. Он нужен для запуска лампы – электрического пробоя горелки и формирования дугового разряда. Напряжение зажигания существенно выше напряжения горения. Обычно от трех до пяти минут энергия уходит на разогрев горелки. В этот момент яркость еще мала. Выход на штатный режим работы занимает не более 10-12 минут, при этом яркость возрастает и нормализуется. На схеме L – фаза (линия, line), N – ноль.

В схеме имеется ИЗУ и катушка индуктивности в качестве балластного элемента. Обычно схема подключения присутствует на корпусе дросселя иили импульсного зажигающего устройства.

Иногда в схему может добавляться неполярный конденсатор. Обычно используется емкость 18-40 мкФ. Он не обязателен, от его добавления лампа не будет светить ярче. Его задача – компенсация фаз. Дело в том, что схема потребляет активную и реактивную мощность, так как присутствует дроссель. От реактивной составляющей нет никакой пользы, а вред налицо – помехи в сети питания и снижение энергоэффективности. Однако добавление емкости в электрическую схему не вызовет повышение энергоэффективности. Добавление конденсатора несколько снизит пусковые токи и предотвратить необратимую деградацию электродов.

Используемая емкость конденсатора выбирается исходя из мощности лампы. Рекомендации представлены в таблице.

Лампы ДНаТ

Мощность лампы, Вт

Параллельно включенный конденсатор 250 В, мкФ

Общие сведения об натриевых лампах и как определить признаки старения

Натриевые лампы высокого давления являются одними из самых эффективных источников ассимиляционного освещения. Голландия – мировой лидер в сфере растениеводства и своим успехом она обязана во многом натриевым лампам. США, Англия, Польша, Германия – это страны с развитой и мощной аграрной сферой, вместе с Нидерландами данная четверка удерживает до 90% рынка мирового экспорта растений и цветов. А почему именно они? Почему страны которые находятся на той же широте, что и к примеру Украина (за исключением южных стран и США) могут выращивать абсолютно любые культуры и снимать хорошие урожаи? Возможно дело в более мягком климате. Но и он особо не позволяет заниматься растениеводством при открытом грунте в период с октябрь по апрель. Остается только выращивание в закрытом грунте с дополнительным освещением для растений.

Получается, что и мы в похожих условиях – ведь общая продолжительность светлой части дня в зимнее время на 45-59 с.ш. практически одинакова для всех. Ответ здесь будет найден в ассимиляционном освещении, которое уже стало реальностью при помощи дуговых натриевых ламп с высоким давлением. Именно данный завораживающий и ослепительный желто-оранжевый свет, который излучают эти лампы, при соблюдении определенных условий может заменить растениям солнечный свет. В отапливаемых теплицах, оранжереях или различных зимних садов лето может быть круглый год. Теперь вы уже не зависите от разных капризов природы, а также от смен периодов года. Вы можете самостоятельно моделировать общую продолжительность светового дня, интенсивность освещения и яркость. Это все благодаря натриевым лампам с высоким давлением.

Читайте также:  Ламинат Brilliant: плюсы и минусы

Натриевые лампы с высоким давлением дуговой формы производятся более чем 15 производителями. Однако лидерами в данной области являются концерны Sylvania и Philips. Первая подобная лампа была создана в конце 70-х годов прошлого века. Данное семейство из ламп газоразрядного типа с высоким давлением было создано специально для мирового аграрного сектора, который уже долгое время искал какую-нибудь альтернативу солнечному свету. С этих пор лампа постоянно совершенствовалась и дорабатывалась, но ее внешний вид и общий принцип действия остался прежним. Опишем это немного подробнее.

  • Прозрачная внешняя колба, выполнена из прочного стекла с огнеупорными свойствами в цилиндрической форме;
  • Внешняя колба содержит внутри разрядную трубку-горелку состоящую из оксида алюминия (иногда вместе со встроенной антенной)
  • Заполнена эта трубка особой натриево-ртутной амальгамой, а также ксеноном;
  • Монтаж внешней колбы к цоколю проходит без использования свинца.

Все натриевые лампы с высоким давлением работают только в сочетании с зажигающим и балластным оборудованием или ПРА (пусково –регулирующая аппаратура). Если ПРА является качественным и прибор эксплуатируется правильно, то общий срок службы у подобных ламп может быть от 24.600 до 32.000 часов, это делает их одними из самых долговечных искусственных источников света. В магазине существуют лампы с мощностью 150, 250, 400, 600 и 1000 W. Лампы питаются от сети 220-230V, и имеют индекс температуры цветовой в 2000-2050 K, также несут поток в пределах 6600-150000Лм (все зависит от мощности).

  1. Теплицы. Тепличные хозяйства множества стран мира взяли на вооружение натриевые лампы высокого давления. Зимой они используются как основной, а осенью и весной – в качестве дополнительного источника света, эти решения позволяют заниматься выращиванием множества различных видов растений, а также снимать урожаи на протяжении всего года.
  2. Оранжереи. Круглогодичное цветоводство и растениеводство, в отапливаемой оранжерее. Селекция и содержание светолюбивых растений – лиан, пальм. Кактусы – мексиканские и чилийские семейства.
  3. Зимний сад. Множество обитателей зимнего сада довольно болезненно воспринимают сокращение светового периода и в период с октября примерно по март обычно впадают в некую спячку. Светолюбивые виды начинают чахнуть или болеть. Решение от Mastergrow помогут в решении этих проблем. Для этого необходим точный расчет необходимого освещения, а также простые схемы для подсветки способны держать ваши растения в хорошем состоянии в течение круглого года.
  4. Гроу-бокс – в специально обустроенных домашних мини – оранжереях закрытого типа. Любые даже очень смелые эксперименты возможны. Выращивание различных видов растений в маленьких помещениях, где свет особо не рассеивается, сможет познакомить вас с новейшими аспектами в растениеводстве.
  • Круглый год контролировать процессы цветения и вегетативного роста у растений.
  • В независимости от времени года собирать хороший урожай
  • Селекционировать и содержать самые теплолюбивые и светолюбивые растения.

Конечно же сферы использования и различные возможности натриевых ламп не ограничиваются всем вышеперечисленным. С приобретением лампы вы получаете безграничное поле для своих экспериментов в области растениеводства. Теперь вы больше не будете зависеть от природы, и будете способны сами создавать и моделировать различные условия для освещения. В оранжерее с отоплением или же зимнем саду зимы не будет никогда – при помощи постоянного отопления и при сочетании с грамотно смоделированным режимом света дадут возможность держать даже самые прихотливые растения в превосходной форме. Удивляйте близких и друзей хорошим тонусом растений в то время, когда за окном зима и морозы, а светлые часы дня можно пересчитать на пальцах. Культивируйте растения в полностью изолированных от света помещениях, используя только лампы – и вы поразитесь скоростью общего вегетативного роста, а также результативностью плодоношения (цветения), так как при данных условиях у растений не бывает пасмурных дней или непогоды.

А что по поводу выгонки и проращивания плодово-ягодной и овощной рассады, которая в апреле или мае, по окончанию заморозков переселяется на дачные участки палисадники и огороды?

Теперь не надо тратить время и заниматься выращивание рассады на своем подоконник. Особая программа для освещения входов позволит получить сильную и здоровую рассаду всего лишь за 3-4 недели. Рассада, которую получили данным способом, будет иметь довольно хороший иммунитет к различным болезням и высокий потенциал для роста, а ее внешний вид скажет сам за себя. В самый разгар аграрного сезона стоит проследить динамку роста и общего развития данных растений; необходимо проследить за закладкой тех же бутонов, также за периодами плодоношения и цветения. Угадайте, кто получит лучший урожай – Вы, или сосед, занимающийся обычным подходом к культивированию. С помощью облучения растений в их раннем возрасте, при помощи натриевых ламп с высоким давлением результативность у культур, обычно повышается от 30 до 40%, т.е. практически в полтора раза.

Конечно никто не запрещает поддерживать обычный метод и подход. Ведь именно искусственный источник света способен заменить солнечный свет, однако кому-то это верится с большим трудом. А еще можно взять во внимание долгие годы различных научных изысканий в сфере ассимиляционного освещения и те же натриевые лампы с высоким давлением. Сложить это с различными информационными материалами, которые представлены на сайте и действовать. Стоять на одном месте или осваивать новую высоту? Обычные решения или новейший и прогрессивный метод? Выбор в этом случае остается только за вами.

Натриевые лампы с высоким давлением (также как и металлгалогеновые) довольно часто применяют гораздо дольше, нежели это рекомендуется в инструкции. Основной причиной служит, их общая высокая стоимость и недостаток необходимой информации по использованию, спецификаций и характеристик от производителя.

В большинстве старение натриевых ламп с высоким давлением можно будет наблюдать по следующим основным признакам:

  • Мерцание (Фликер)

Основной причиной данного явления служит рост напряжения рабочего в разрядной горелке данной лампы за продолжительное время работы. Рабочее напряжение у новой лампы имеет конкретную величину и обычно возрастает пока общий ресурс данной лампы не будет полностью исчерпан, и она перестанет работать.

После того как прошла фаза охлаждения горелки (лампу выключили), которая является индивидуальной для каждой лампы газоразрядного типа с высоким давлением, лампа может быть зажжена повторно (включена)

Постоянное включение и выключение лампы не только начинает раздражать своим мерцанием, но и способно привести к общей перенагрузке всех электрических компонентов.

Они образуются из необратимых процессов старения металла находящегося в антенне лампы и в держателе разрядной горелки. В этих случаях игнитор функционирует в полном режиме, т.е. постоянно высылаются импульсы, которые и становятся причинами данных радиопомех.

  • Уменьшение светового потока

Высокопроизводительная, а также долгая жизнь лампы газоразрядного типы в основном зависит непосредственно от общего количества или длительности и общего время включения. При зажигании возникают дуги, и начинается первый период горения лампы, также образуется большая нагрузка, которая в процессе приводит к эрозии электродов.

От времени включений и общей длительности зависит обычно как срок использования, так и светопередача. При неправильной эксплуатации лампы ее срок может значительно уменьшится, а потери связанные со светоотдачей увеличатся.

У натриевых ламп с высоким давлением светоотдачей обычно называют отношение общего светового потока к мощности потребляемой (лмВт).

  • Выпрямление тока
  • Выпрямление тока

Иногда стающие газоразрядные лампы с высоким давлением создают ассиметрию. Происходит это из-за различных временных промежутков сгорания электродов, и следственно неполного разрушения для горелки (деградация). Описывается данное явления как выпрямительный эффект или выпрямление тока.

В данном случае, на ток накладывается постоянный ток в импульсной форму, который возникает во время сетевой полуволны. Из-за того, что ПРА обладают небольшим сопротивлением к постоянному току, образуется мощный ток, который обычно вызывает нагрузку на все компоненты лампы выше допустимых.

Эффект обычно проявляется при окончании использования лампы. Ассиметрия имеет свойство к прогрессии со временем. Деградация при этом происходит до того момента, пока дальнейшей работе не будет препятствовать используемая в лампах Philips технология по автоматическому выключению, она реагирует на особо критичный изменения проходящие в симметрии у разрядной горелке.

Воины света: LED против ДНАТ

Оборудование

Итак, растением-испытателем у нас стал физалис сорта «Колокольчик». Из оборудования у нас было:

  • 2 гроутента 100х100х200;
  • Светильник LED ApolIo 8;
  • SensiRoom H;
  • Лампа General Electric HO Lucalox ДНаТ 400;
  • Светильник CoolMaster 100;
  • ЭПРА Nanolux OG 400W electronic ballast;
  • Кокосовый субстрат от компании UGRO;
  • Удобрение GHE Flora Coco;
  • Стимулятор Hesi SuperVit.

    Гроутенты были оборудованы совершенно одинаково, за исключением освещения: в одном стоял LED ApolIo 8, в другом Лампа General Electric HO Lucalox ДНаТ 400 + светильник CoolMaster 100 + ЭПРА Nanolux OG 400W electronic ballast. Теперь мы расскажем обо всех этапах роста и развития физалиса.

    Проращивание семян и посадка в грунт

    Мы замочили 12 семян физалиса в чистой воде и через сутки они раскололись. Шесть из них мы посадили в кокосовые диски, а шесть – в торфяные таблетки.
    Через неделю мы увидели, что в кокосовых дисках взошли все семена, а в торфяных таблетках – только пять. Однако рассада в торфе выглядела качественней: она больше, развивается быстрее, растет вертикально. В то время как в кокосовых дисках ростки вытягивались и гнулись.

    Когда на растениях появилась первая пара настоящих листочков, мы посадили их в гроубаги объемом 20 л. Пока физалис еще очень мал для такого объема, но с «умными горшками» это легко исправить – достаточно подогнуть гроубаг несколько раз, превратив его из двадцатилитрового в десятилитровый. По мере роста рассады достаточно будет подсыпать субстрат в горшок и постепенно его разворачивать. Так растения станут приземистее.

    В качестве субстрата мы выбрали кокос – довольно капризный материал в работе, часто пересыхает. Поэтому, как только наши растения окрепнут, мы установим в оранжереях капельный полив.
    На начальном этапе для увлажнения воздуха в оранжерее мы использовали Генератор холодного тумана – это портативный бытовой увлажнитель, который может работать в любой емкости с водой. В нашем случае это была пятилитровая бутылка из-под питьевой воды.

    Первые трудности

    После очередных выходных мы обнаружили свой физалис в плачевном состоянии. Причиной тому стали три фактора:
    1. В емкости для генератора холодного тумана закончилась вода, и он отключился. Мы неверно рассчитали объем жидкости, и ее просто не хватило на время нашего отсутствия, из-за чего у растений случилась настоящая засуха.
    2. Физалис получил ожоги – лампа ДНАТ мощностью 400 Вт не подходит для стадии вегетации. Благо у нас в оранжерее стоял отличный балласт, и мы диммировали лампу на 50%, получив ДНАТ 200 Вт. LED светильник мы повесили на 20 см выше, чтобы исключить возможность ожогов.
    3. Вентиляция вытягивает очень много влаги из гроутентов, растения еще маленькие, и поток сухого воздуха сказался на них негативно. Поэтому вентиляцию мы пока отключили.

    За день растения ожили, а спустя еще пару – от «великой засухи» в наших оранжереях не осталось и следа.
    В конечном итоге, в наших оранжереях оказалось по два горшка с физалисом, одно из них крупнее, второе – чуть меньше. На стадии вегетации разницы между растениями под LED и ДНАТ мы не увидели. Весь физалис развивался хорошо, был примерно одного размера и собирался с силами, чтобы зацвести.
    Интересное наблюдение: растения, которые мы проращивали в кокосовых дисках получились вытянутыми, но развиваются немного быстрее. А те, что были высажены в торфяные таблетки – приземистыми, кустистыми, с короткими междоузлиями. На основании этого мы делаем вывод: если вы хотите большое растение, которое с первых дней будет наращивать свою массу — проращивайте в семена в кокосовых дисках. А если вам нравятся небольшие кустистые растения — используйте торфяные таблетки.

    Этап цветения

    Спустя примерно месяц с посадки семян наш физалис зацвел. За этот месяц мы подкармливали наши растения удобрениями всего три раза, остальное время поливали чистой водой.

    Уже несколько недель в наших оранжереях установлена система капельного полива, сделали мы ее своими руками при помощи ведра с водой, помпы, шлангов и капельниц. Пошаговую инструкцию смотрите в этом видео. Но мы модернизировали наш автополив прибором SensiRoom H от лаборатории E-Mode PRO. Этот прибор включает и выключает систему по уровню влажности субстрата, что очень важно, если выращиваешь на кокосе. Так что проблема с засухой была решена раз и навсегда!

    Трудности номер два

    Уже на цветущем физалисе мы обнаружили ржаво-серые пятна. Предполагая, что это грибковое заболевание, мы удалили пораженные листья и обработали растение и всех его «соседей» Фитоспорином. Это бактериальный препарат, созданный специально для борьбы с болезнетворными грибками и бактериальными болезнями.

    Более точный диагноз поставить было очень сложно, особенно на начальном этапе. Но мы вовремя заметили недуг и приняли все меры по лечению растения.
    Для закрепления результатов мы обработали физалис фитоспорином дважды с интервалом в неделю. После чего пятна на листьях больше не появлялись.

    Возвращаемся к этапу цветения

    Когда кусты физалиса стали довольно большими и раскидистыми, а растет он как лиана, мы установили в гроутентах специальные сетки Secret Jardin. За них растение легко цепляется, формируя более плотный куст, а также не ломается под тяжестью плодов.

    Разница кустов под разным освещением пока малозаметна. В обоих тентах растения хорошо развиты, они одного роста и обильно цветут. Однако физалис под ДНАТ имеет больше боковых побегов, и в целом кусты смотрятся пышнее.

    Плодоношение

    Спустя три месяца от посадки семян мы собрали первый урожай. Для честности скажем, что первые плоды мы не срывали, а собирали те, что сами упали. Но максимальные вкусовые качества у физалиса раскрываются, после того как он полежит пару дней при комнатной температуре. Поэтому мы собирали плоды и складывали их в коробку.

    Вот так выглядят показатели нашей оранжереи на этапе плодоношения:
    • Влажность воздуха 62%;
    • Температура 29 С
    • Режим освещения 16/8;
    • Удобрения Flora Coco – 300 ррм;
    • Добавка Powder Feeding Calcium – 0,5 гр на литр воды;
    • Смесь витаминов и аминокислот Super Vit Hesi 10мл – 4 капли на 20 литров раствора;
    • Расход воды 2 л/сутки.
    Уровень ррм раствора постепенно уменьшали, поменяли раствор на менее концентрированный. За основу мы брали не чистую осмотическую воду, а разбавляли её обычной водопроводной водой, в соотношении: 100 мл водопроводной воды на 900 мл осмотической. Как ни крути, но растению нужен хлор в малых дозах.
    Растения под ДНАТ начали плодоносить на две недели раньше своих LED-соседей. Но на всех кустах плоды были довольно крупными и их было много.
    Мы также решили проверить физалис на нитраты при помощи бытового нитратомера. Пробы сняли с плодов, выросших под разным освещением, несколько раз — показатель практически одинаковый, разница незначительна. Так как в программе прибора нет нужной нам культуры, выбрали «Томат» — ближайшего родственника физалиса.

    Итоги и неожиданные выводы

    Высадили Физалис мы 10 мая, а сняли весь урожая 8 сентября, он мог расти и плодоносить и дальше, но мы не видели в этом смысла.
    Спустя 121 день в гроубоксе, в котором было ДНАТ освещение, растение нам дало 1330 г плодов физалиса. А растение, под LED-освещением 1160 гр плодов (то есть всего на 14% меньше). Такой исход был прогнозируем, некоторые скептики даже предполагали, что под ДНАТ будет в два раза больше плодов. Но всегда есть некоторые «но»!

    Вывод номер один: по количеству урожая ДНАТ победил, однако по качеству и размеру плоды одинаковые.
    Вывод номер два: LED выгоднее ДНАТ. Так как все остальное оборудование в оранжереях одинаковое, мы решили найти характерную разницу, измерив показатель «грамм/ватт» и взяв только затраты электроэнергии на освещение. Легко посчитать, что на ДНАТ 400 Вт за 121 день при световом режиме 16/8 мы потратили – 774,4 кВт. (Вы легко можете посчитать, сколько это в деньгах, зная тарифы своего региона.) LED-светильник был более экономичен – 542,08 кВт. Итак, у ДНАТ-освещения получается 1,717 гр на 1 кВт (1,717гр/кВт). У LED-светильника 2,139 гр на 1 кВт (2,139 гр/кВт).

    Если кого-то напугала вся эта математика, то в двух словах мы можем, заключит, что лед-освещение проявило себя эффективнее, чем ДНАТ-освещение. На потраченный киловатт электроэнергии мы получили больше урожая под LED. Мы получили одинаковый по качеству урожай в двух боксах, под ДНАТ-освещением его получилось больше, но вот под лед освещением этот урожай получился дешевле.
    Возможно, это лишь капля в море и выборка слишком мала, чтобы делать громкие заявления. Но, факт – дело упрямое. Надеемся, наш опыт будет вам полезен!

    Сравнение светильников ДРЛ, ДНаТ и светодиодных светильников

    Таблица 1. Параметры типовых ламп и светильников ДРЛ и ДНаТ

    ВидТипНоминальная мощность, ВтПотребляемая активная мощность, ВтСреднее время горения, часовСветовой поток лампы, Лм (начальный)Средний световой поток с учетом КПД светорассеивателя светильника, Лм (начальный)Средний световой поток светильника с лампой, Лм
    (через 3 месяца эксплуатации)
    Для подбора LED аналогов *
    Средний световой поток с учетом КПД светорассеивателя светильника, Лм (через 1 год эксплуатации)
    ДРЛДРЛ-12512514012 0006 0004 4003 1002 600
    ДРЛ-25025028012 00013 2009 6506 8005 800
    ДРЛ-40040046015 00024 00017 50012 300
    10 500
    ДРЛ-70070082020 00041 00029 95021 000
    18 000
    ДНаТ
    ДНаТ-5050556 0003 7002 8002 4002 200
    ДНаТ-7070806 0006 0004 4003 9003 500
    ДНаТ-1001001156 0009 4006 8506 0005 500
    ДНаТ-15015017010 00014 50010 6009 4008 500
    ДНаТ-25025030015 00026 00019 00016 700
    15 200
    ДНаТ-40040047015 00048 00035 10033 800
    28 000

    * Световой поток с учетом потерь в отражателе светильника и первичной деградации ламп (в зависимости от их типа) при начальной эксплуатации.

    Таблица 2. Сравнительные характеристики светильников с лампами ДРЛ, ДНАТ и LED(светодиодный)


    МИФ №2. Световой поток светильников ДРЛ и ДНаТ примерно равен справочным данным ламп
    ДРЛ и ДНаТ .
    Как правило справочные таблицы светового потока приведены НЕ для светильников ДРЛ и ДНАТ , а для ламп ДРЛ и ДНАТ. Только часть светового потока лампы светит прямо из светильника , остальная часть светового потока должна отразится от светорассеивателя. Отражатель-рассеиватель светильника имеет большие потери, связанные с невозможностью собрать и сформировать весь световой поток из оптико-геометрических сложностей в изготовлении отражателя, а также из больших потерь отражающего материала, для которого ключевым параметром является надежность и цена, а не оптические свойства. Таким образом потери из-за отражателя составляют около 20-25%. Если в светильники есть защитное стекло, оно также вноси потери до 10%.
    Вывод: реальная разница между световым потоком светильника ДРЛ и ДНаТ и паспортным лампы составляет около 27% (25..35%)

    МИФ №3. При световых расчетах можно ориентироваться на паспортный световой поток светильника (световой поток ламп ДРЛ и ДНаТ с учетом потерь отражателя светильника).
    Лампы ДРЛ и ДНаТ имеют сильную деградацию в процессе первичной эксплуатации, которую необходимо учитывать сразу при световых расчетах!
    Лампы ДРЛ через три месяца теряют порядка 30%
    светового потока, а через 1 год эксплуатации 40% светового потока!
    Лампы ДНаТ через три месяца теряют порядка 15% светового потока, а через 1 год эксплуатации 20% светового потока!
    Вывод: для расчетов освещенности для светильников с лампами ДРЛ и ДНаТ необходимо учитывать НЕ начальный (паспортный) световой поток, а световой поток после начальной эксплуатации , например через 3 месяца, а лучше 1 год эксплуатации!

    Примечание: В реальности светодиоды
    тоже не идеальны, и есть факторы которые тоже вызывают деградацию светового потока. Но для качественных светильников с правильно рассчитанным теплоотводом и стабилизаторами тока, деградация является незначительной и ей можно пренебречь.

    Светодиоды через три месяца теряют порядка 2%
    светового потока, а через 1 год эксплуатации 4% светового потока!

    МИФ №4. Эксплуатация светильников ДРЛ и ДНАТ, дороже светодиодных на стоимость ламп и работ по их замене.
    Эксплуатация светильников ДРЛ и ДНаТ, конечно в основном это недешевые работы по замене перегоревших и быстро деградирующих ламп, где нужно учесть не только закупку самих ламп, но и в основном стоимость дорогих высотных работ с вышкой.
    Также с ледует учитывать существенные дополнительные работы в процессе эксплуатации по удалении пыли и грязи с рассеивателей и отражателей светильников. Нужно достаточно часто протирать светильники, причем аккуратно, учитывая хрупкость ламп. Это является достаточно дорогим и НЕОБХОДИМЫМ обслуживанием. Если вовремя не протирать отражатель и рассеиватель светильника, потери светового потока могут составить до 50%!
    Вывод: Светодиодные светильники тоже пылятся, но их конструкция (за счет плоского стекла и герметичного корпуса, а также отсутствия отражателя, которому предъявляются повышенные требования по чистоте), нуждается в существенно более редком и простом обслуживания в процессе эксплуатации.

    Светодиодные светильники LED

    Перенапряжение и светодиоды.
    На светодиод как на таковой подавать напряжение нельзя из-за его ВАХ(вольт-амперная характеристика). Либо он не загорится, либо сгорит, поэтому светодиод управляется током. Самый простой способ – через резистор. В светильнике для подачи «съедобного» тока на светодиодную цепь предусмотрен так называемый драйвер. Драйвер не только выступает в роли преобразователя (адаптера), но также предохраняет светодиоды от перенапряжения и скачков в электросети. В случае удар на себя принимает именно драйвер, что существенно снижает стоимость не гарантийного ремонта светильника.

Оцените статью
Добавить комментарий