Методы погружения заранее изготовленных свай

Погружение свай

Сваи являются соединением между основанием дома и слоем грунта. Их устанавливают, чтобы сделать фундамент более прочным. Сваи бывают из разного материала: металл, дерево, железобетон. Сваи погружаются в грунт либо наполовину, либо полностью, это зависит от того, какое сооружение предполагают построить. Видов свай существует несколько: буронабивные, деревянные, железобетонные, трубобетонные, шпунтовые и грунтоплавленые сваи.

Каждый тип подойдет лишь для определенного типа почвы. Для разных видов свай требуется свой метод погружения. Все эти нюансы необходимо соблюдать, чтобы в конце концов вы построили крепкое основание вашего жилого дома.

В этой статье будут обсуждаться все виды свай, их применение, а также методы погружения свай (технологии погружения), оборудование и специальные инструменты, которые требуются для погружения различных видов свай.

  • Виды свай
  • Буронабивные сваи
  • Деревянные сваи
  • Железобетонные сваи
  • Трубобетонные сваи
  • Шпунтовые сваи
  • Грунтоплавленые сваи
  • Методы погружения свай
  • Ударный метод погружения свай
  • Вибрационный метод погружения свай
  • Метод погружения свай вдавливанием
  • Завинчивание
  • Буронабивной способ для погружения свай
  • Погружение комбинированных свай
  • Заключение

Виды свай

Буронабивные сваи

Они имеют несколько разновидностей, основная из них – баретт. Преимущество этой разновидности заключается в том, что она обладает высокой несущей способностью. Форма буронабивных свай – прямоугольная. Баретт используют для равномерной передачи давления стен и предметов, находящихся внутри здания, на фундамент. Методов погружения буронабивных свай существует множество. Основные из них:

  1. Способ раскатки слоя грунта.
  2. Способ вибропогружения трубы для обсадки.
  3. Бурение происходит ударно-канатным способом.

Погружение буронабивных свай

Чтобы произвести бурение, используют специальный станок. Бурение происходит двумя способами: ударный, вибрационный. Затем происходит погружение свай (методы будут рассматриваться далее), их бетонирование. Внимание: при установке буронабивных свай нужно четко следовать точному алгоритму действий.

Деревянные сваи

Их используют в местах со слабой несущей способностью слоя грунта. Материалом данных свай являются стволы сосен. Если невозможно найти данный материал, позволяется использовать стволы другого дерева – дуба. Перед установкой нужно запастись специальными инструментами, а точнее молотами:

  1. Паровоздушными
  2. Механическими
  3. Вибрационными

Погружение деревянных свай

При погружении концы свай делаются острыми. Также при погружении в почву, можно на концы свай надеть специальные башмачки, сделанные из металла. Бывает, что длины свай недостает. В этом случае применяют их наращивание.

Железобетонные сваи

Погружение железобетонных свай

Здесь все нагрузку конструкции передают на грунт. В данном виде свай в материале используется тяжелый бетон. Давление передается посредством трения железобетонных свай и слоя грунта. Метод погружения железобетонных свай – забивка. Забивка происходит молотом (гидравлическим). Материал вообще не деформируется, остается в прежнем состоянии без потери своих характеристик. Перед погружением железобетонных свай необходимо определить несущую способность почвенного покрова.

Трубобетонные сваи

Погружение трубобетонных свай

Используют для придания большой прочности основания дома. Для погружения применяют трубу (материал – сталь). Метод погружения – забивка. Для забивки трубобетонных свай используют пневмоударную машину. Используют в местах со слабой несущей способностью слоя грунта (глинистой, песчаной, влажной).

Шпунтовые сваи

Их не используют для постройки обычного жилого дома. Они применяются для постройки временных конструкций, которые в будущем будут снесены. Шпунтовые сваи могут быть сделаны из разного материала, они бывают железобетонные, стальные, деревянные. При погружении их устанавливают рядом друг с другом для того, чтобы они не пропускали внутрь воду. Данная конструкция имеет название: шпунтовая стена.

Грунтоплавленые сваи

Перед погружением происходит нагрев почвенного покроя, из-за чего изменяются физико-химические свойства грунта. После данного процесса устанавливается нужная плотность грунтового слоя для дальнейшего погружения свай. Сначала делают дегидратацию, то есть отделяют молекулы воды от грунта (осушение). Затем происходит спекание – это делают для того, чтобы материал перешел в твердое состояние. Потом грунт подвергают плавлению. Далее над расплавом проводят гомогенизацию (нагревание) – данный процесс проводят для придания почвенному покрою однородности. После нагрева массу охлаждают. Грунт становится твердым и приобретает молекулярную кристаллическую решетку. После данного длительного процесса грунт приобретает необходимые для погружения свай физические, химические и механические свойства.

Погружение грунтоплавленных свай

Для строительства обычных жилых домов используются следующие виды свай: буронабивные, деревянные, трубобетонные. Изредка применяются грунтоплавленые. При установке данных видов свай следует соблюдать правила и иметь при себе специальные инструменты и оборудование.

Методы погружения свай

Способов погружения свай существуют несколько, все они имеют общую цель: погружение свай на нужную точку, глубину, заданные по проекту строительства. Методы:

Различные методы погружения свай

  1. Комбинированные (рассмотрим в самом конце статьи).
  2. Ударный способ.
  3. Погружение способом вибрации.
  4. Вдавливание свай.
  5. Сваи могут завинчивать.
  6. Буронабивной способ для погружения свай.

Эти шесть методов будут рассматриваться в данной статье, также рассмотрим преимущества и недостатки каждого отдельного способа. Комбинированные методы рассмотрим в самом конце.

Ударный метод погружения свай

Является самым популярным способом из всех с применением специального ударного оборудования (различные молоты). Как было сказано ранее, в основном используют паровоздушные и гидравлические молоты. Также существуют дизельные молоты. Плюс данного молота заключается в том, что энергия удара у них в 4 раза больше, чем у остальных.

Для забивки используют пневмоударную машину. При забивке удары осуществляются в верхний конец свай. Чтобы после этих ударов сваи не деформировались и не подверглись разрушению, применяют оборудование под названием наголовник. Забивка продолжается до тех пор, пока сваи не достигнут глубины, которая необходима по проекту строительства. Наиболее часто этот способ использует для строительства промышленных сооружений и обычных жилых домов. Если сваи сделаны из железобетона, для их удобной установки требуется автомобильный кран, который будет поддерживать железобетонную сваю снизу.

Чтобы выбрать тип молота для забивки свай, необходимо определить массу свай и молота. Дизельные молоты обладают наибольшей производительностью, их используют при больших объемах работы. Механические молоты обладают наименьшей производительностью, их применяют при маленьких объемах работы. Дизельные молоты будут выполнять работы даже при температуре -30 градусов. Паровоздушные и гидравлические молоты используют для забивки металлических и деревянных свай. Чтобы сваи забивались в ровном направлении, молотами сначала бьют с небольшой высоты. В данном случае следует совершить несколько ударов. Когда сваи достигают нужной глубины, в конце совершаются последние десять ударов для каждой сваи.

Вибрационный метод погружения свай

Здесь применяется специально оборудование, называемое вибропогружателем, который будет точно по вертикали погружать сваи. Как только конец сваи коснется почвенного покроя, вибропогружатель включают на низкую скорость и постепенно погружают в грунт. Когда уменьшают скорость данного оборудования, нагрузка на грунт идет только со стороны свай, иначе установка может провалиться. Если слой грунта твердый, для этого дополнительно применяют другой инструмент – вибромолот. С помощью вибромолота сваи погружаются одновременно ударами и вибрацией. Это способствует быстрому погружению установки в почву. Если погружение свай происходит в глинистую почву, то несущая способность свай любого материала значительно уменьшается. Чтобы это предотвратить нужно применить ударный метод погружения свай. Когда будет оставаться примерно 25 сантиметров до необходимой глубины забивать свай нужно механическим молотом.

Вибрационный метод погружения свай используется для грунтов, насыщенные большим количеством влаги. Данный способ можно использовать и для плотных слоев грунта, но перед погружением свай нужно пробурить скважину, и лишь затем выполнять вибропогружение. Обычно используют виброударный метод погружения свай, он помогает быстро достичь необходимой глубины, заданной по проекту строительства. Вес ударной части вибромолота должен равняться (как минимум) половине массы свай (масса зависит от материала). Важно помнить, что сваи должны с легкостью преодолевать любое сопротивление почвенного покроя. Сопротивление почвы с повышенной влажностью преодолевается вибрацией. Плотный слой грунт преодолевается ударами. Вибрационный способ погружения свай – трудоемкий процесс.

Метод погружения свай вдавливанием

Данный метод используется в местах с плотным почвенным покроем. Поверхность, на которой будет строиться основание дома необходимо полностью сделать ровной. Количество свай для метода вдавливания потребуется гораздо меньше, чем для других способов их погружения. В самом начале сваи опускают на глубину одного метра. Затем сваи начинают постепенно продолжают вдавливать на глубину, которая необходима по проекту строительства. Вдавливание свай выполняет специальная самоходная машина. Обычно способ вдавливания используют для железобетонных свай. Метод погружения свай вдавливанием имеет ряд преимуществ:

  1. При использовании данного метода достигается наибольшая прочность фундамента.
  2. Применяя данный способ, гораздо легче определить давление конструкции на основание дома. В будущем маловероятно появление осадки фундамента.
  3. Погружение свай может происходить в различный тип грунта.
  4. Для установки железобетонных свай методом вдавливания понадобится наименьшее количество времени в сравнении с другими способами.
  5. Самый дешевый метод погружения свай.
  6. После установки свай несущая способность основания дома увеличивается.
  7. Не требуется дополнительных работ по укреплению свай в грунте.

Эти преимущества делают метод погружения свай посредством вдавливания одним из наилучших способов. Есть три технологии вдавливания свай: точечная, линейная и кустовая. Как было сказано ранее для данного способа используется сваевдавливающая машина. Такая машина имеет свои плюсы:

  1. Для погружения свай не понадобятся другое оборудование и инструменты.
  2. Перед началом работы нет необходимости в бурении скважин.
  3. Использование машины сэкономит ваше время и силы.

Есть плюсы, есть и минусы:

  1. Данное оборудование имеет огромные размеры и не подойдет для работы на маленьких участках земли.
  2. Огромная цена.

Метод вдавливания свай один из новейших способов погружения свай в почвенный покров.

Завинчивание

Данный метод подойдет только для свай, имеющих винтовой наконечник из стали. Ранее метод погружения свай завинчиванием использовался преимущественно в промышленности, но сейчас он получил большое распространение и в строительстве частных домов. На нижнем конце сваи расположен «башмачок», конусообразной формы. Завинчивание осуществляется специальными установками, которые находятся на машине, а именно кабестанами. Кабестан опускает сваю над нужным местом. Свая, в свою очередь, с помощью вращательных движений наконечника пробуривает грунт до требуемой глубины. Метод завинчивания свай имеет схожие стороны с такими способами, как ударный и вибрационный. После достижения глубины внутренняя полость свай бетонируется. Основные составляющие винтовых свай – это нижняя и верхняя части. Одним из главных преимуществ способа погружения свай завинчиванием является то, что при необходимости их с легкостью можно выкрутить обратно. Множество плюсов содержатся в винтовых сваях. Давайте их обсудим:

  1. Установка возможна как на влагосодержащей почве, так и на твердом грунтовом слое.
  2. Погружение можно осуществлять в любое время года (зима, весна, лето, осень).
  3. Винтовые сваи являются экономным вариантом.
  4. Не требуется большого количества строительной техники.

Недостатки винтовых свай:

  1. Защитная оболочка свай может быть существенна повреждена при погружении в скальный слой грунта.
  2. Со временем материал, из которого сделаны сваи могут поддаться ржавлению.

Винтовые сваи используют для того, чтобы ускорить процесс строительства основания здания. Завинчивают сваи в грунтовый слой в шахматном порядке. Это довольно простой процесс и не требует особых усилий, но требует профессионализма и прилежности в работе. Погружение свай этим методом должна осуществлять специализированная бригада с профессиональными строителями. Конечно же данный тип строительства можно проводить и самостоятельно, но перед установкой необходимо все рассчитать, чтобы в последующем не возникло отрицательных последствий. Винтовые сваи могут повредиться, когда их погружают внутрь почвы, потому что в ней могут находиться различные препятствия, такие как камни, корни деревьев или другие предметы, все они могут мешать погружению винтовых свай. Чтобы устранить все эти проблемы, перед установкой нужно провести пробное бурение грунта. Если почва содержит большое количество камней, то строительство свайного основания дома невозможно. Если они встречаются в малом количестве, то стоит скорректировать свои расчеты, и только затем приступить к погружению винтовых свай.

Буронабивной способ для погружения свай

Перед установкой набивных свай необходимо пробурить скважину в почвенном покрое. Все буронабивные сваи являются железобетонными. Данный метод применяется как в промышленности, так и в строительстве жилого здания. Набивные сваи также используются в крупномасштабных проектах. В самом начале в пробуренную скважину помещаются обсадные трубы, например, из рубероида. Устанавливают арматуру и заливают бетонную смесь. Пока бетон не засох, обсадные трубы изымают из грунтового слоя. Данный способ имеет только один, но большой минус: вы потратите много времени, так как на отвердевание бетонной смеси понадобится около 30 дней. Погружение буронабивных свай требует профессиональных рабочих, потому что данный процесс содержит несколько нюансов. В местах с глинистым и песчаным почвенным покроем установка буронабивных свай не рекомендуется, потому что «ствол» установки может иметь неровное направление. На сегодняшний день погружение буронабивных свай набирает популярность для плотных почв.

Погружение комбинированных свай

Погружения комбинированных свай

Комбинированные сваи – используются в местах, где имеется очень слабый почвенный покрой, и погружение необходимо осуществить на глубину 25 метров. Материал комбинированных свай – железобетон или сталь. Стоит признать, что комбинированные сваи используются в редких случаях, по сравнению с остальными видами свайных установок. Нижний конец сваи сделан из дерева, а верхний конец – железобетон, либо сталь. Комбинированные сваи погружаются в почву различными способами, но наиболее распространенный является ударный метод. Поэтому комбинированные сваи забиваются в грунт молотами (дизельными). Их обычно используют в строительстве промышленных сооружений. Точка глубины, на которую нужно погрузить комбинированные сваи, находится ниже грунтовых вод (30 метров). Предприятия, занимающиеся добычей полезных ископаемых (нефть, газ, каменный уголь и другие), нуждаются в постройках, у которых основание крепится на комбинированных сваях. Комбинированные сваи делятся на несколько типов. Каждый из этих типов имеют свои преимущества и недостатки. Выбор типа комбинированных свай зависит от свойств почвенного покроя. Наиболее распространенная комбинированная свая та, которой верхний конец буронабивной, а нижний конец забивной.

Заключение

Хочется подвести итог. Все эти способы имеют право на существование. Каждый метод применяется в определенной сфере (промышленное или обыкновенное строительство). Ударный метод, вибрационный метод, методы вдавливания и завинчивания – все они имеют свои преимущества и недостатки. Многое зависит от места, где будет осуществляться постройка того или иного сооружения. У всех этих методов имеются две общие стороны: перед установкой различных видов свай следует провести все необходимые расчетные работы и погружением свай должны заниматься исключительно профессионалы. Для каждого отдельного способа требуется специальное оборудование. Оборудования и инструменты могут быть разными для каждого метода погружения свай: сваевдавливающая машина, молоты (дизельные, гидравлические, паровоздушные), пневмоударная машина, кабестан. В любом случае помните, фундамент вашего дома должен быть крепким!

Способы погружения свай

Погружение свай: способы

При возведении больших построек, крупных объектов чаще всего выбором становится свайный фундамент. Он пригоден для любых типов почвы, обеспечивая надежность базовой конструкции. Возведение сооружения осуществляется быстрее, чем при укладке ленточного или любого иного базиса, на котором в будущем будет возводиться дом.

Производится по разным методикам:

  • ударная;
  • вибрационная;
  • вдавливающая;
  • завинчивающая.

    При техниках разных видов возникает комбинированная методика:

  • виброударная;
  • вибровдавливающая;
  • погружающая, подмывающая грунтовые слои;
  • погружающая, использующая электроосмос.

    1. Удары

    Сильные удары передают поступательную энергию, в результате чего пронзается грунтовая толща, выдавливая часть земли наружу, попутно создавая плотную подушку. Она укрепляет место и делает фундамент более прочным. Чтобы воспользоваться данной техникой, необходимо задействовать на стройплощадке тяжелые, сложные механизмы – рельсовые или самоходные ударные установки.

    Рабочие элементы удерживают строго вертикально при помощи своеобразных стрел – копров. Первоначально погружение свай происходит медленно, постепенно, без резких рывков или качков. Это обязательное требование – соблюдение жесткого контроля правильного угла наклона. Малейшее отклонение от норматива приводит к браку.
    Воздействие осуществляется при помощи штангового или трубчатого молота. Обладая одинаковым весом, молот трубчатый, в отличие от штангового, имеет трехкратно большую силу. От мощных толчков и постукиваний конструкция способна разрушиться. Чтобы этого не случилось, используется специальный предохраняющий наголовник.

    Заглубление ведется до момента достижения проектной глубины, вычисляемой на стадии гидрогеологических изысканий. Для Подмосковья средняя глубина составляет 2-3 метра, для влажных песчаников некоторых регионов может достигать 8 метров. Не экономьте на предварительных работах, это в будущем упрощает проведение строительства.

    Преимуществами метода считаются:

  • возведение сооружений возможно на любых почвах;
  • этап строительства ведется быстро, с высокой производительностью;
  • несущие свойства фундамента усиливаются благодаря уплотнению земельной «подушки» порядка 20-30 сантиметров вокруг рабочей зоны;
  • климатические и погодные капризы никак не влияют на качество и сроки.

    2. Вибрация

    За счет передаваемой вибрации на погружаемую опорную конструкцию происходит снижение силы трения и сопротивления. Использование вибрационной техники требует меньших усилий, что уменьшает и трудозатраты. Вибрационный способ, аналогично ударному, позволяет уплотнить «подушку» радиусом 15-30 сантиметров. Это придает дополнительную несущую прочность несущим конструкции.

    При монтажных манипуляциях используются вибропогружатели, передающие механические сотрясения через защитный наголовник на объект приложения силы. Вибрация всегда носит строго определенную частоту, превращая любой грунт в «плывучий». Результатом становится достаточно быстрое и плавное погружение свай под собственной тяжестью. Чем длиннее и тяжелее элемент, тем ниже будет частота, чем легче и короче – тем выше (до 1 500 колебаний в течение минуты).

    Работа начинается с фиксации исходного положения вибропогружателя и крепежа монтажного элемента для придания вертикализации. Перед началом монтирования необходимо произвести пробный запуск дорогостоящего оборудования, чтобы выявить возможные отклонения от вертикали. Сложными машинами обязаны управлять только квалифицированные рабочие. Вибропогружатель можно арендовать, снижая его стоимость. Опытные операторы всегда сопровождают ценную машину, их услуги включены в финальную цену.

    Читайте также:  Какой стиль интерьера подходит вашему знаку Зодиака

    Методика вибрации всегда востребована в зоне строительства на территориях, где много песчаника, а также существует избыточное водонасыщение. Процесс занимает 3,5-7 минут. При большой плотности, малой влажности земли технология применяется с оговоркой о необходимости предварительного бурения скважин. Наличие глины или тяжелых суглинков в обязательном порядком требует переходить на ударную методику при критерии недостижения плановой глубины не более 30 сантиметров.
    Из минусов – плотная городская застройка диктует необходимость вести все манипуляции в режимах без резонанса с частотой колебаний, не превышающей 50 Гц.

    3. Виброудары

    Погружение свай складывается из применения ударной и вибрационной нагрузок. Оно происходит под воздействием колебаний/ударов, благодаря чему фиксация проходит быстро и просто. Методика хорошо востребована на плотных почвах, где ведение работ по другим протоколам не столь эффективно.

    Виброударный способ осуществляется двухрамной установкой. На первой раме крепится ударник с электрогенератором, на второй – вибропогружающая стрела. Зацепившись наголовником, будущая опора позиционируется, включается механизм. Для этого метода оптимальная глубина составляет не более 6 метров.

    4. Вибровдавливание

    Рассчитано на погружение свай 6-метровой (или меньше) длины за счет вибровдавливающей техники. Углубление происходит за счет статистического пригруза и вибрации. Механическая установка запитывается к электрическому генератору экскаватора/трактора, процесс осуществляется лебедкой с двумя барабанами, направляющей стрелой, оснащенной вибропогружателем и блоками вдавливающего каната.

    Вибровдавливатель должен занять рабочее положение. Крюк располагается четко над местом проведения манипуляций. Подняв защищенную наголовником опорную часть, вибропогружатель фиксирует ее. Медленно, из-за вибрационного движения низкочастотного погружателя с плитой на рессорах, собственного веса, габаритной массы вибровдавливателя, электрогенератора и ударной нагрузки, передающимся через вдавливающий канат от погружателя, монтажные элементы достигают проектной глубины. Установка не требует заблаговременного устройства путей перемещения и ничего не разрушает. Достоинством подобного способа являются простота доставки техники до стройплощадки, а недостатком – невысокая работоспособность из-за ограниченного маневрирования.

    5. Вдавливание

    Вдавливание получило значительное распространение при возведении сооружений высокой прочности в сжатые сроки. Демонстрирует хороший результат на крайне плотных и твердых землях (исключение – скальные породы) с использованием элементов трубчатого или сплошного сечения (длина – от 3 до 5 метров). Воздействие ведется при помощи статической нагрузки. Вдавливание востребовано за счет высокой экономичности, постоянной возможности компьютерного мониторинга, повышения прочности и несущей способности, отсутствия раздражающих шумов. В рабочем процессе задействуется специальные тяжелые машины, занимающие много места, поэтому вдавливание пригодно лишь при наличии на территории стройки участков со свободной площадью не менее 500 квадратов.

    Погружаемое основание фиксируется в направляющей стреле строго по вертикали при помощи зажимов. Вручную установка выравнивается, опора вдавливается. После вхождения на метровую глубину «голову» охватывают оголовником, передающим давление генераторного устройства на блочную систему, и производя погружение свай все глубже. В ситуации невозможности достичь проектную глубину с первого раза, свайное основание приподнимается спецоборудованием и вновь опускается, продолжая процесс вдавливания. Процедура может повторяться многократно.
    Освободив устройство от анкерных пригрузов, машина перемещается к последующему месту. Для ускорения перемещений, осуществляющихся достаточно медленно, задействуют самоходные шасси. При небольшой стоимости виброустановки у нее есть недостатки, заключающиеся в необходимости дополнительного оборудования и длительного времени подготовки заглубления.

    6. Завинчивание

    Методика подходит только для винтовых опорных сооружений, состоящих из стального наконечника с лопастями, обеспечивающими ввинчивание. Основной ствол состоит из железобетона или стали. Такая технология востребована при возведении объектов, подвергающихся большой нагрузке (мосты, линии электропередач). Идеальными считаются грунты неплотные либо подтапливаемые, климатический пояс не играет никакой роли. При монтаже фундаментальной части дома не имеет значения плотность зоны застройки, работа ведется точечно, без звуковых и вибрационных эффектов.

    Ввинчивание осуществляется при помощи оборудования, закрепленного на раме автотягача. Осуществляется заглубление опорных элементов. Оборудование выдает крутящий момент, который через трансмиссию заглубляет все путем вращения. Когда грунтовая поверхность плотная, разрешено немного приподнять винтовую конструкцию и повторно запустить механизм.

    7. Подмыв

    Почвенный подмыв на рыхлых, сыпучих песчаниках и супесчаниках необходим для конструктивных элементов большой длины и значительного диаметра. Внимание! Этот метод категорически нельзя использовать на грунтах с высокой возможностью просадки. Это может быть чревато просадкой других близлежащих построек. Подмыв основывается на пропитывании земли водой, в результате чего увеличивается сила скольжения, опоры легко заглубляются под воздействием собственной массы и тяжести рабочего инструмента.

    В свайный наконечник и боковые стенки монтируются трубки, через которые жидкость, подающаяся под давлением, поступает в почвенный слой. Из-за свойств воды земля умягчается, становится рыхлой, постепенно вымываясь. Сопротивление ослабевает, между тем вода, продолжая свою кропотливую работу, размывает все вокруг стенок. Сила трения снижается.

    Трубки с водой имеют диаметр от 38 до 62 миллиметров. Размытие боковое происходит за счет попадания воды под давлением из 2 или 4 боковых трубок, расположенных на 40 сантиметров выше острой части. Сила трения падает, составляя конкуренцию центральному подмыву через трубочки на основании наконечника.
    Такая обработка скважин не позволяет говорить о высоких несущих качествах, поэтому для усиления надежности применяют комбинацию с ударной технологией. По факту расходы падают, а надежность строящегося фундамента заметно возрастает.

    8. Электроосмос

    Электроосмос является хорошей альтернативой традиционному монтажу фундамента, значительно упрощающей деятельность операторов сложной техники. Идеально подходит для суглинков и глины, отличающихся значительно плотностью и водонасыщенностью. Две опоры соединяются в электросеть. Уже погруженная выступает в роли анода, а вторая, еще только взятая для монтажа, становится катодом. Из грунта вокруг анода убирается влага, конденсируясь в зоне подле катода. Влажные грунтовые слои снижают сопротивление и позволяют осуществить запланированное методами удара или вдавливания.
    Как только ток заканчивается, свойства почвы мгновенно восстанавливаются.

    9. Буронабивная технология

    Эта технология стоит особняком, имея опосредованное отношение к погружной технике. Рабочие основания создаются сразу на участке путем заливания бетоном арматурного ствола в заранее сформированной скважине, проделанной при помощи множественных ударов или вращательного бура.

    Свайные буронабивные опоры создаются:

  • обсадными трубами. В скважину ставится трубка, фиксирующая стенки от осыпания. Затем делается каркас из железа, куда вливается бетон. В зависимости от типа использованной трубы ее можно демонтировать или не убирать из скважины. Технология пригодна для любых гидрогеологических условий;
  • без труб. Бетон заполняет скважину в процессе бурения, параллельно укрепляя ненадежные стенки и беря на себя обсадную функцию. Внутрь бетонной болтушки помещается арматурный каркас. Чтобы заливка внутри была равномерной, используются специальную заливочную трубку с вибратором.
    Схемы создания свайного поля

    Подведем итог

    Возведение фундаментального основания – важный процесс. Он требует всестороннего изучения особенностей земельного надела, специфики возводимой постройки. Погружение свай по определенному методу во многом определяет надежность и долговечность будущего строения.
    Все методики, нацеленные на погружение свай, имеют пару общих моментов.

  • Первое. Перед монтажом необходимо проведение тщательных расчетов и исследований.
  • Второе. Управление специальными машинами при создании свайного поля осуществляют только профессионалы.

    Как выполняется измерение сопротивления заземления

    Защитное действие заземления всецело связано с величиной его сопротивления, а последнее зависит от многих факторов, метеорологических и гидрологических, не говоря уже о состоянии самих заземлителей и заземляющих проводов.

    Поскольку величина сопротивления заземления подвержена большим колебаниям, становится ясным то громадное значение с точки зрения безопасности, которое приобретает испытание заземления, выражающееся главным образом в измерении сопротивления, заземления. При этом важно не только начальное испытание перед сдачей в эксплуатацию, но и периодические испытания, через определенные промежутки времени.

    Безопасность пользования электрической энергией зависит не только от правильного монтажа электроустановки, но и от соблюдения требований, заложенных нормативной документацией в ее эксплуатацию. Контур заземления здания, как составная часть защитного электрического оборудования, требует периодического контроля своего технического состояния.

    Содержание статьи

    Как работает заземляющее устройство

    В нормальном режиме электроснабжения контур заземления РЕ-проводником соединен с корпусами всех электроприборов, системой выравнивания потенциалов здания и бездействует: через него, грубо говоря, не проходят никакие токи, за исключением небольших фоновых.

    Как заземление защищает человека

    При возникновении аварийной ситуации, связанной с пробоем слоя изоляции электропроводки, опасное напряжение появляется на корпусе неисправного электроприбора и по РЕ-проводнику через контур заземления стекает на потенциал земли.

    За счет этого величина прошедшего на нетоковедущие части высокого напряжения должна снизиться до безопасного уровня, неспособного причинить электротравму человеку, контактирующему с корпусом неисправного оборудования через землю.

    Когда РЕ-проводник или контур заземления нарушены, то отсутствует путь стекания напряжения и ток станет проходить через тело человека, оказавшегося между потенциалами поврежденного бытового прибора и землей.

    Поэтому при эксплуатации электрооборудования важно поддерживать в исправном состоянии контур заземления и периодическими электрическими замерами контролировать его состояние.

    Как возникает неисправность у заземляющего устройства

    В новом исправном контуре электрический ток аварии по РЕ-проводнику поступает на токоотводящие электроды, контактирующие своей поверхностью с грунтом и через них равномерно уходит на потенциал земли. При этом основной поток равномерно разделяется на составляющие части.

    В результате длительного нахождения в агрессивной среде почвы металл тоководов покрывается поверхностной окисной пленкой. Начинающаяся коррозия постепенно ухудшает условия прохождения тока, повышает электрическое сопротивление контактов всей конструкции. Ржавчина, образующаяся на стальных деталях, обычно носит общий, а на отдельных участках ярко выраженный местный характер. Связано это с неравномерным наличием химически активных растворов солей, щелочей и кислот, постоянно находящихся в почве.

    Образующиеся частицы коррозии в виде отдельных чешуек отодвигаются от металла и этим прекращают местный электрический контакт. Со временем таких мест становиться столько, что сопротивление контура увеличивается и заземляющее устройство, теряя электрическую проводимость, становится неспособным надежно отводить опасный потенциал в землю.

    Определить момент наступления критического состояния контура позволяют только своевременные электрические замеры.

    Принципы, заложенные в измерение сопротивления заземляющего устройства

    В основу метода оценки технического состояния контура заложен классический закон электротехники, выявленный Георгом Омом для участка цепи. С этой целью достаточно через контролируемый элемент пропустить ток от калиброванного источника напряжения и с большой степенью точности замерить проходящий ток, а потом вычислить величину сопротивления.

    Метод амперметра и вольтметра

    Поскольку контур работает в земле всей своей контактной поверхностью, то ее и следует оценивать при замере. Для этого в почву на небольшом удалении (порядка 20 метров) от контролируемого заземляющего устройства заглубляют электроды: основной и дополнительный. На них подают ток от стабилизированного источника переменного напряжения.

    По цепи, образованной проводами, источником ЭДС и электродами с подземной токопроводящей частью грунта начинает протекать электрический ток, величина которого замеряется амперметром.

    На очищенную до чистого металла поверхность контура заземления и контакт основного заземлителя подключается вольтметр.

    Он замеряет падение напряжения на участке между основным заземлителем и контуром заземления. Разделив значение показания вольтметра на измеренный амперметром ток, можно вычислить общее сопротивление участка всей цепи.

    При грубых замерах им можно ограничиться, а для вычисления более точных результатов потребуется скорректировать полученное значение вычитанием величины сопротивления соединительных проводников и влияния диэлектрических свойств почвы на характер токов растекания в грунте.

    Уменьшенное на эту величину и замеренное по первому действию общее сопротивление и даст искомый результат.

    Описанный способ является довольно простым и неточным, имеет определенные недостатки. Поэтому для выполнения более качественных измерений, производимых специалистами электротехнических лабораторий, разработана более усовершенствованная технология.

    Компенсационный метод

    Замер основан на использовании уже готовых конструкций метрологических приборов высокого класса точности, выпускаемых промышленностью.

    При этом способе тоже используется установка основного и вспомогательного электродов в почву.

    Их разносят по длине около 10÷20 метров и заглубляют на одной линии, захватывающей испытываемый контур заземления. К шине заземлительного устройства подключают измерительный зонд, стараясь разместить прибор поближе к контакту шины. Соединительными проводниками соединяют клеммы прибора с установленными в землю электродами.

    Источник переменной ЭДС выдает в подключенную схему ток I1, который проходит по замкнутой цепи, образованной первичной обмоткой трансформатора тока ТТ, соединительным проводам, контактам электродов и землей.

    Вторичная обмотка трансформатора ТТ воспринимает ток I2, равный первичному и передает его на сопротивление реостата R, позволяющего реохордом «б» выставлять баланс между напряжениями U1 и U2.

    Изолирующий трансформатор ИТ транслирует проходящий по его первичной обмотке ток I2 в свою вторичную цепь, замкнутую на измерительный прибор V.

    Ток I1, протекающий по грунту на участке между основным заземлителем и контуром заземления, образует на замеряемом нами участке падение напряжения U1, которое вычисляется по формуле:

    Ток I2, проходящий по участку реостата R «аб» с сопротивлением rаб, формирует падение напряжения U2, определяемое выражением:

    Во время выполнения замера перемещают ручку реохорда таким образом, чтобы отклонение стрелки прибора V установилось на ноль. В этом случае будет выполнено равенство: U1=U2.

    Тогда получим: I1∙rx=I2∙rаб.

    Поскольку конструкция прибора выполнена так, что I1=I2, то соблюдется соотношение: rx=rаб. Остается только узнать сопротивление участка аб. Но, для этого достаточно ручку потенциометра сделать побольше и на ее подвижную часть вмонтировать стрелку, которая будет перемещаться по неподвижной шкале, проградуированной заранее в единицах сопротивления реостата R.

    Таким образом, положение стрелки-указателя реостата при компенсации падений напряжений на двух участках позволяет замерить сопротивление заземляющего устройства.

    Используя изолирующий трансформатор ИТ и специальную конструкцию измерительной головки V, добиваются надежной отстройки прибора от блуждающих токов. Высокая точность измерительного механизма способствует малому влиянию переходных сопротивлений зонда на результат замера.

    Приборы, работающие по компенсационному методу, позволяют точно замерять сопротивления отдельных элементов. Для этого достаточно на один конец измеряемой цепи подключить проводник, снятый с точки 1, а на второй — измерительный зонд (точка 2) и провод с точки 3 от вспомогательного электрода.

    Приборы для измерения сопротивления заземляющего устройства

    За время развития энергетики измерительные приборы постоянно совершенствовались в вопросах облегчения использования и получения высокоточных результатов.

    Еще несколько десятилетий назад широко применялись только аналоговые измерители производства СССР таких марок, как МС-08, М4116, Ф4103-М1 и их модификации. Они продолжают работать и в наши дни.

    Сейчас их успешно дополняют многочисленные приборы, использующие цифровые технологии и микропроцессорные устройства. Они несколько упрощают процесс замера, обладают высокой точностью, хранят в памяти результаты последних вычислений.

    Методика выполнения замера сопротивления заземлительного устройства

    После доставки прибора на место проведения замера и извлечения его из транспортировочного кейса готовят шинопровод к подключению контактного проводника: отчищают от следов коррозии место для подключения зажима типа крокодил напильником или устанавливают струбцину с винтовым зажимом, продавливающим верхний слой металла.

    Замер сопротивления трехпроводным методом

    Требования безопасной работы требуют выполнять измерения при отключенном автоматическом выключателе во вводном щите питания здания либо снятом с заземлителя РЕ-проводнике. Иначе при возникновении аварийного режима ток утечки пойдет через контур и прибор или тело оператора.

    Соединительный проводник подключают к прибору и струбцине.

    На установленной дистанции молотком забивают в грунт электроды заземлители. Навешивают на них катушки с соединительными проводниками и подключают их концы.

    Устанавливают контакты проводов в гнезда прибора, проверяют готовность схемы к работе и величину напряжения помехи между установленными электродами. Она не должна превышать 24 вольта. Если это положение не выполнено, то придется менять места установки электродов и перепроверять этот параметр.

    Остается только нажать кнопку выполнения автоматического замера и снять вычисленный результат с дисплея.

    Однако, успокаиваться после получения результата первого замера нельзя. Чтобы проверить свою работу необходимо выполнить небольшую серию контрольных измерений, переставляя потенциальный штырь на небольшие дистанции. Расхождение всех полученных значений сопротивлений не должны расходиться более чем на 5%.

    Замер сопротивления четырехпроводным методом

    Для использования способов вертикального электрического зондирования измерители сопротивления контура заземления можно использовать по четырехпроводной схеме, расставляя приемные электроды по методике Веннера или Шлюмберже.

    Этот способ больше подходит для глубинных исследований и вычисления удельного электрического сопротивления грунта.

    Вариант подключения прибора марки ИС-20/1 по этой схеме показан на картинке.

    Замер сопротивления заземлителя с применением токоизмерительных клещей

    При использовании метода необходимо иметь фоновый ток от электроустановки здания в контур заземления. Его величина у большинства приборов, работающих по этому типу, не должна превышать 2,5 ампера.

    Замер сопротивления контура без разрыва цепи заземлителей с применением измерительных клещей

    Используя измеритель ИС-20/1м можно выполнить электрическую оценку состояния заземлительного устройства здания по следующей схеме.

    Замер сопротивления контура без вспомогательных электродов с применением двух измерительных клещей

    При этом способе не требуется устанавливать дополнительные электроды в землю, а можно выполнить работу пользуясь двумя токовыми клещами. Их потребуется разнести по шинопроводу заземлительного устройства на расстояние большее чем 30 сантиметров.

    Выбор методики проведения замера зависит от конкретных условий эксплуатации оборудования и определяется специалистами лаборатории.

    Оценку состояния заземлительного устройства можно выполнять в разное время года. Однако, следует учитывать, что в период большого нахождения влаги в почве во время осенне-весенней распутицы условия для растекания токов в земле наиболее благоприятные, а в сухую жаркую погоду — наихудшие.

    Летние замеры при высушенном грунте наиболее качественно отражают реальное состояние контура.

    Некоторые электрики рекомендуют для снижения значения сопротивления проливать почву около электродов растворами солей. Следует понимать, что это мера временная и неэффективная. С уходом влаги состояние проводимости вновь ухудшится, а ионы растворенной соли будут разрушать металл, расположенный в почве.

    Читайте также:  Коды ошибок стиральных машин Electrolux: E40 и E90, E60 и EF0, E52 и E54, E57 и E41, E43 и E51. Как их устранить?

    В заключение

    Всем внимательным читателям и опытным электрикам предлагается посмотреть на прилагаемую ниже картинку, демонстрирующую простой, на первый взгляд, способ реализации измерения сопротивления заземляющего устройства, который не нашел широкого практического применения в лабораториях.

    Объясните в комментариях какие электротехнические процессы происходят при таком способе и как они влияют на точность измерения. Проверьте свои знания, удачи!

    Измерение сопротивления заземления: обзор методов практических измерений

    Заземление используется в реализации различных проектов электрических систем. Само понятие “заземление” схематично рассматривается подключением участка электрической цепи к потенциалу земли.

    Контур заземления содержит проводник и электрод, внедрённый глубоко в грунт. Традиционным действием в электротехнической практике является измерение сопротивления заземления только ещё запускаемых и уже эксплуатируемых сетей. Мы расскажем, как и каким образом производится это важное действие.

    Для чего необходимы измерения?

    Блестящее решение перечисленных ниже задач достигается идеальным нулевым сопротивлением в заземляющей цепи:

    1. Не допустить появления напряжения на корпусе технологических машин.
    2. Добиться эффективного опорного потенциала электроаппаратуры.
    3. Полностью устранить статические токи.

    Правда электротехнический опыт показывает: результат под идеальный нуль получить невозможно.

    В любом случае, заземлённый электрод выдаёт какое-никакое сопротивление.

    Конкретную величину resistance определяют:

    • сопротивление электрода в точке контакта с проводящей шиной;
    • контактная область между земляным электродом и грунтом;
    • структура грунта, дающая разное сопротивление.

    Практика измерений сопротивления контура заземления отмечает, что первыми двумя факторами вполне можно пренебречь, но при соблюдении логичных условий:

    1. Заземляющий электрод сделан из металла с высокой электропроводимостью.
    2. Тело штыря электрода тщательно зачищено и плотно посажено в грунт.

    Остаётся фактор третий – резистивная поверхность грунта. Он видится главной расчётной деталью для измерений сопротивления контура заземления.

    Вычисляется же благодаря формуле:

    R = pL / A,

    где: p – удельное сопротивление грунта, L – условное заглубление, А – рабочая площадь.

    Чтобы обезопасить владельцев дома/квартиры, заземлением должны быть снабжены все виды мощного домашнего электрооборудования:

    При тестировании сопротивления каждую из заземляющих линий проверяют отдельно. Сопротивление между заземляющим элементом и каждой не проводящей ток частью электрооборудования, попадание под напряжение которой возможно, должно быть меньше 0,1 Ом.

    Обзор измерительных способов

    Существует несколько вариантов измерения сопротивления контура заземления, каждый из которых вполне точно позволяет определить искомую величину.

    3-точечная система определения

    Так, например, часто применяется методика 3-х точечной схемы, основанная на эффекте падения потенциала.

    Измерения выполняют за три основных шага:

    1. Замер напряжения на электроде Э1 и зонде Э2.
    2. Замер силы тока на электроде Э1 и зонде Э3.
    3. Расчёт (формулой R = E / I) сопротивления заземляющего электрода.

    Для этой методики точность замеров логически зависима от места инсталляции зонда Э3. Его рекомендуется внедрять в грунт на удалении – оптимально за пределы так называемой области ЭСЭ (эффективного сопротивления электродов) Э1 и Э2.

    Измерения по технологии «62%»

    Если структура грунта под размещение заземляющего электрода отличается однородным содержимым, методика «62%» для определения сопротивлений контуров заземления обещает хорошую результативность.

    Способ применим под схемы с единственным заземляющим электродом. Точность показаний здесь обусловлена возможностью расположения рабочих зондов на прямолинейном участке, относительно заземляющего электрода.

    Точки инсталляции контрольных зондов

    Заглубление электрода, мРасстояние до зонда Э1, мРасстояние до зонда Э2, м
    1,813,721,9
    2,415,2524,4
    3,016,7526,8
    3,618,329,25
    5,521,635,0
    6,022,536,6
    9,026,242,65

    Упрощённый двухточечный метод

    Применение этого способа измерений требует наличия ещё одного качественного заземления помимо того, которое будет подвергаться исследованию. Методика актуальна для территорий густонаселённых, где часто нет возможности широко оперировать вспомогательными рабочими электродами.

    Метод двухточечного измерения отличается тем, что одновременно показывает результат для двух устройств заземления, включенных последовательно. Этим и объясняются требования к высокому качеству исполнения второго заземления, чтобы не учитывать его сопротивление.

    Для выполнения вычислений также измеряется сопротивление заземляющей шины. Полученный результат вычитывают из результатов общих замеров.

    Точность этого способа оставляет желать лучшего по сравнению с двумя вышеизложенными. Здесь существенную роль играет расстояние между заземляющим электродом, сопротивление которого измеряется и вторым заземлением. Стандартно такая методика не применяется. Это своего рода альтернатива, когда нельзя использовать другие способы измерений.

    Точные измерения по четырём точкам

    Для большинства вариантов измерения сопротивлений наиболее оптимальным способом, помимо 2-х и 3-х точечных, считается 4-х точечная технология. Такой технологией замеров наделены приборы, подобные тестеру 4500 серии. Судя из наименования метода, на рабочей площадке в одну линию и на равных расстояниях размещаются четыре рабочих электрода.

    Генератор тока прибора подключается на крайние электроды, в результате чего между ними течёт ток, значение которого известно. На других клеммах прибора подключены два внутренних рабочих электрода.

    На этих клеммах присутствует значение падения напряжения. Конечный результат по замерам – сопротивление заземления (в Омах), значение которого прибор демонстрирует на дисплее.

    Приборами из серии 4500 часто пользуются для измерения напряжения прикосновения. Устройством при помощи специального модуля генерируется в земле напряжение небольшой величины – имитация повреждения кабеля.

    Одновременно на шкале прибора указывается ток, текущий по цепи заземления. Показания на экране берут за основу и умножают на предполагаемую величину тока в земле. Таким способом вычисляют напряжение прикосновения.

    К примеру, максимальное значение ожидаемого тока на участке повреждения равно 4000А. На экране прибора отмечается величина 0,100. Тогда величина напряжения прикосновения будет равна 400В (4000*0,100).

    Измерение прибором С.А6415 (6410, 6412, 6415)

    Уникальность этого способа – возможность проведения замеров без отключения заземляющей цепи. Также здесь следует выделить преимущественную сторону, когда измерять общее сопротивление устройства заземления допустимо методом включения в цепь заземления резистивной составляющей всех соединений.

    Принцип работы примерно следующий:

    1. Специальным трансформатором в цепи создаётся ток.
    2. Ток течёт в образованном контуре.
    3. С помощью синхронного детектора регистрируется измеряемый сигнал.
    4. Полученный сигнал преобразуется АЦП.
    5. Результат выводится на ЖК-дисплей.

    Устройство оснащается модулем (избирательный усилитель), благодаря которому полезный сигнал эффективно очищается от разного рода помех – н.ч. и в.ч. шумов. Лапами клещей в их сочленённом состоянии образуется возбуждаемый контур, охватывающий проводник заземления.

    Инструкция измерения прибором С.А6415

    Последовательность действий при работе с прибором серии С.А6415 доходчиво описывается в инструкции, прилагаемой к этому уникальному устройству.

    Например, есть необходимость провести измерения сопротивления заземления какого-либо электрического модуля (трансформатора, электросчётчика и т.п.).

    1. Открыть доступ к заземляющей шине, сняв защитный кожух.
    2. Захватить клещами проводник (шину или непосредственно электрод) заземления.
    3. Выбрать режим измерения «А» (измерение тока).

    Максимальное значение тока прибора составляет 30А, поэтому в случае превышения этой цифры выполнять измерение нельзя. Следует снять прибор и повторить попытку измерений в другой точке.

    Когда полученная на шкале величина тока укладывается в допустимый диапазон, можно продолжить работу переключением прибора на измерение сопротивления «?».

    Высвеченный на дисплее результат покажет общее значение сопротивления, включая:

    • электрод и шину заземления;
    • контакт нейтрали с электродом заземления;
    • контакт соединений на линии между нейтралью и заземляющим электродом.

    Работая с клещами, следует иметь в виду: завышенные показания прибора по сопротивлению заземления, как правило, обусловлены плохим контактом заземляющего электрода с грунтом.

    Также причиной высокого сопротивления может быть оборванная токоведущая шина. Высокие цифры сопротивлений в точках соединений (сращиваний) проводников тоже могут влиять на показания прибора.

    Общие рекомендации по измерению УСГ

    Прежде чем сооружать цепь заземления, к примеру для газового котла, следует получить точные сведения о том, в область каких грунтов будет закладываться заземляющий электрод. Часто для определения значений “p” грунта предлагается обращаться к существующим таблицам.

    Однако этот вариант с таблицами даёт чисто ориентировочные данные. Поэтому полагаться на них не стоит. Истинные значения сопротивления грунта могут отличаться в разы.

    Вариант #1: однослойный грунт

    Если грунт имеет однородную составляющую, его удельное сопротивление измеряют методикой «пробного электрода».

    Метод предполагает выполнение определённой процедуры в два этапа:

    1. Берут стержневой контрольный зонд длиной чуть больше глубины проектной закладки.
    2. Погружают зонд в землю строго вертикально на глубину проектной закладки.
    3. Оставшийся над поверхностью земли конец используют для замера сопротивления растекания (Rr).
    4. Определяют УСГ по формуле p = Rr * Ψ.

    Желательно выполнить процедуру несколько раз в различных точках рабочей площадки. Альтернативные замеры помогают достичь точных результатов измерений сопротивления грунта.

    Вариант #2: многослойный грунт

    Для такой ситуации замер УСГ выполняют методом ступенчатого зондирования. То есть контрольный зонд погружается до рабочей глубины ступенями и в положении каждой ступени выполняются измерения удельного сопротивления. Вычисления среднего УСГ производятся с помощью формул для каждого отдельного измерения.

    Затем, исходя из климатических особенностей местности, находят значения для сезонных изменений. Таким способом (достаточно сложным) получают расчётные значения УСГ верхних слоёв. Нижележащие слои рассматриваются как не подверженные сезонным изменениям и потому расчёт для них ограничивается несколько упрощённым измерением и вычислением.

    Требования к исполнению работ

    Работы подобного плана, конечно же, выполняются квалифицированным персоналом, представляющим специализированные организации. Так, за эксплуатацию силовых щитков в жилых домах, как правило, отвечают коммунальные службы. Производить какие-либо измерения в этих точках разрешается только через обращение к этим службам.

    Электрические цепи относятся к опасным системам. Несмотря на то, что коммуникации бытового сектора рассчитаны под напряжение менее 1000В, это напряжение смертельно для человека. Требуется соблюдать все необходимые меры безопасности при обращении с электрическим оборудованием. Обывателю зачастую такие меры попросту неведомы.

    С особенностями сооружения заземления для ванны в городской квартире ознакомит следующая статья, содержащая правила и руководство по проведению работы.

    Выводы и полезное видео по теме

    Выполнение измерений на практике с помощью прибора:

    Исполнение работ, связанных с проверкой сопротивления заземления, требуется обязательно, независимо от сложности электрической схемы и категории объекта, где устанавливается или установлено и эксплуатируется электрооборудование. Многие специализированные организации готовы предоставлять такие услуги.

    Оставляйте, пожалуйста, комментарии в расположенном ниже блоке. Не исключено, что вы знаете простой и эффективный способ измерения сопротивления контуров заземления, не приведенный в статье. Задавайте вопросы, делитесь полезной информацией и фото по теме.

    Можно ли замерить сопротивление заземления мультиметром и как это правильно сделать?

    То, что правилами требуется периодически измерять сопротивление заземления, это не просто чья-то придумка или блажь, это, прежде всего, вопрос безопасности человеческой жизни. Существуют определённые нормативы и замеры должны им соответствовать. В статье мы рассмотрим, как замерить сопротивление заземления мультиметром и другими измерительными приборами.

    Перед тем, как проверить заземление в частном доме очень важно, чтобы вы поняли саму суть этой процедуры, для чего она выполняется, какую основную цель преследует, почему это так необходимо?

    Что такое заземление?

    Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

    Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

    Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

    По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

    Эти электроды необходимо вбить максимально глубоко (их длина должна быть не менее 2 м).

    Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

    Перед использованием необходимо проверить контур на заземляющее сопротивление.

    О том, что такое заземление – на следующем видео:

    В чём суть работы заземления?

    Принцип действия защитного заземления основывается на главном качестве электрического тока – протекать по проводникам, которые обладают наименьшим сопротивлением. На сопротивление человеческого тела оказывают влияние многие факторы, но в среднем оно приравнивается к 1000 Ом.

    Согласно Правилам устройства электроустановок (ПУЭ) контур заземления должен иметь сопротивление гораздо меньшее (допускается не более 4 Ом).

    А теперь смотрите, в чём заключается принцип действия защитного заземления. Если какой-то электрический прибор неисправен, то есть произошёл пробой изоляции и на его корпусе появился потенциал, и кто-то прикоснулся к нему, то ток с поверхности прибора будет уходить в землю через человека, путь будет выглядеть как «рука-тело-нога». Это смертельная опасность, величина тока 100 мА вызывает необратимые процессы.

    Защитное заземление сводит этот риск до минимума. Современные электроприборы имеют внутреннее соединение заземляющего контакта штепсельной вилки с корпусом. Когда прибор посредством вилки включён в розетку и в результате повреждения на его корпусе появляется потенциал, то он уйдёт в землю по заземляющему проводнику с низким сопротивлением. То есть ток не пойдёт через человека с сопротивлением 1000 Ом, а побежит через проводник, у которого эта величина намного меньше.

    Вот почему важным этапом в обустройстве электрического хозяйства в наших жилых домах является измерение сопротивления заземления. Нам нужна 100 % уверенность, что эта величина ниже наших человеческих 1000 Ом.

    И запомните, что это процедура не разового характера, измеряться сопротивление должно периодически, а сам контур надо постоянно поддерживать в исправном состоянии.

    Проверка заземления розеток

    Если вы купили дом или квартиру, и вся электрическая часть в помещении уже была смонтирована до вас, как проверить заземление в розетке?

    Для начала предлагаем вам произвести визуальный осмотр. Отключите вводной автомат на квартиру и разберите одну розетку. У неё должна быть соответствующая клемма, к которой подсоединяется заземляющий проводник, как правило, он имеет жёлто-зелёное цветовое исполнение. Если всё это присутствует, значит, розетка заземлена. Если же вы обнаружили только два провода – коричневый и синий (фазу и ноль), то розетка не имеет защитного заземления.

    В то же время наличие жёлто-зелёного проводника ещё не говорит об исправности заземления.

    Эффективность контура можно определить специальным прибором, без которого не обходится ни один электрик, мультиметром. Алгоритм этой проверки выглядит следующим образом:

    • В распределительном щитке включите вводной автомат, то есть в розетках должно присутствовать напряжение.
    • На приборе установите режим измерения напряжения.

    • Теперь необходимо щупами прибора прикоснуться к фазному и нулевому контакту и померить между ними напряжение. На приборе должна высветиться величина порядка 220 В.
    • Аналогичный замер произведите между фазным и заземляющим контактами. Измеряемое напряжение будет немного отличаться от первой величины, но сам факт появления на экране каких-то цифр говорит о том, что в помещении присутствует заземление. Если на экране прибора никаких цифр нет, значит, контур заземления отсутствует либо он в неисправном состоянии.

    Когда нет мультиметра, проверить работу контура можно тестером, который собирается своими руками. Вам понадобятся:

    • патрон;
    • лампочка;
    • провода;
    • концевики.

    Электрики называют подобный тестер «контрольной лампочкой» или сокращённо «контролькой». Прикоснитесь одним концевым щупом к фазному контакту, вторым дотроньтесь до нулевого. Лампочка при этом должна загореться. Теперь концевик, которым вы прикасались к нулю, переведите на усик заземляющего контакта. Если лампочка снова загорится, значит, контур заземления в рабочем состоянии. Лампа не будет гореть, если защитное заземление не рабочее. Слабое свечение станет свидетельством плохого состояния контура.

    Если к проверяемой цепи подключено УЗО, то во время проверочных действий оно может сработать, это означает, что заземляющий контур работоспособен.

    Обратите внимание! Может быть такая ситуация, что во время прикосновения концевиками к фазному и заземляющему контактам лампа не загорелась. Попробуйте тогда с фазного контакта переместить щуп на нулевой, возможно во время подключения розетки ноль с фазой были попутаны.

    В идеале надо начинать проверочные действия с того, что при помощи индикаторной отвёртки определять в коммутационном аппарате фазный контакт.

    Наглядно этот способ показан на видео:

    О неисправном либо неподключенном контуре заземления могут также свидетельствовать такие косвенные ситуации:

    • бьётся током стиральная машина или водонагревательный бойлер;
    • слышится шум в колонках, когда работает музыкальный центр.

    Проведение замеров

    И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

    А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

    • Прибор расположите на горизонтальной ровной поверхности.
    • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
    • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
    • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
    • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.
    Читайте также:  Мансардные окна: виды и особенности установки

    • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм 2 . Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм 2 .
    • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

    Наглядно, как проводится измерение заземления на следующем видео:

    Некоторые основные параметры и правила

    Неважно, в какое время года вы будете производить замеры, показания всегда должны соответствовать следующим нормам:

    Для источников с однофазным напряжениемДля источников с трёхфазным напряжениемВеличина сопротивления заземления
    127 В220 В8 Ом
    220 В380 В4 Ом
    380 В660 В2 Ом

    Замеры рекомендуется выполнять при определённых погодных условиях, когда земля считается наиболее плотной.

    Идеальное время – это середина лета (когда грунт сухой) и середина зимнего периода (когда земля сильно промёрзшая).

    Мокрый грунт сильно повлияет на растекаемость тока, поэтому измерения, проведённые в сырую и влажную погоду в весенний или осенний период, будут искажёнными.

    Есть ещё способ производить замеры токоизмерительными клещами, но самым лучшим вариантом будет обращение в специализированную службу. Электротехническая лаборатория произведёт все необходимые измерения и выдаст соответствующий протокол, в котором будут указаны место проведения испытаний, характер и удельное сопротивление грунта, величины замеров с сезонным поправочным коэффициентом.

    Как измерить сопротивление контура заземления – обзор методик

    Работа токовыми клещами

    Сопротивление контура заземления можно измерять также токовыми клещами. Их преимущество в том, что нет необходимости отключать заземляющее устройство и применять вспомогательные электроды. Таким образом, они позволяют достаточно оперативно вести контроль за заземлением. Рассмотрим принцип работы токовых клещей. Через заземляющий проводник (который в данном случае является вторичной обмоткой) протекает переменный ток под воздействием первичной обмотки трансформатора, которая находится в измерительной головке клещей. Для расчета величины сопротивления необходимо разделить значение ЭДС вторичной обмотки на величину тока, измеренную клещами.

    В домашних условиях можно использовать токовые клещи С.А 6412, С.А 6415 и С.А 6410. Более подробно узнать о том, как пользоваться токоизмерительными клещами, вы можете в нашей статье!

    Безэлектродный способ

    Этот метод является наиболее современным и позволяет измерять сопротивление контура, не прибегая к размыканию заземляющих стержней и установке дополнительных заземляющих электродов. В связи с этим условием, метод имеет ряд дополнительных преимуществ:

    • возможность производить замеры в полевых условиях, в тех местах, где невозможно применить другие методы измерения сопротивления;
    • экономия времени и средств для выполнения работ.

    Безэлектродный метод может применяться, если используются двое измерительных токовых клещей. Например, это могут быть современные тестеры типа Fluke 163. Клещи располагают вокруг заземляющего электрода или соединительного кабеля. Клещами при этом измеряется индуцируемое напряжение. Его амплитуда фиксируется вторыми клещами.

    Тестер автоматически определяет сопротивление контура заземления для данного соединения.

    Периодичность измерений

    Проводить визуальный осмотр, измерения, а также при необходимости частичное раскапывание грунта нужно согласно графику, который установлен на предприятии, но не реже чем один раз в 12 лет. Получается, что, когда производить замеры заземления – решать вам. Если вы живете в частном доме, то вся ответственность лежит на вас, но не рекомендуется пренебрегать проверкой и замерами сопротивления, так как от этого напрямую зависит ваша безопасность, при пользовании электрооборудованием.

    При проведении работ необходимо понимать, что в сухую летнюю погоду можно добиться наиболее реальных результатов измерений, так как грунт сухой и приборы дадут наиболее правдивые значения сопротивлений заземления. Напротив, если замеры будут проведены осенью либо весной в сырую, влажную погоду, то результаты будут несколько искажены, так как мокрый грунт сильно влияет на растекаемость тока, что, в свою очередь, дает большую проводимость.

    Если вы хотите, чтобы измерения защитного и рабочего заземления проводили специалисты, то необходимо обратиться в специальную электротехническую лабораторию. По окончании работы вам будет выдан протокол измерения сопротивления заземления. В нем отображается место проведения работ, назначение заземлителя, сезонный поправочный коэффициент, а также на каком расстоянии друг от друга находятся электроды. Образец протокола предоставлен ниже:

    Напоследок рекомендуем просмотреть видео, в котором показывается как измеряют сопротивление заземления опоры ВЛ:

    Вот мы и рассмотрели существующие методики измерения сопротивления заземления в домашних условиях. Если вы не обладаете соответствующими навыками рекомендуем воспользоваться услугами специалистов, которые все сделают быстро и качественно!

    Также рекомендуем прочитать:

    Измерение сопротивления контура заземления

    При использовании электрических приборов всегда существует риск поражения электрическим током. Эта вероятность происходит из свойств упорядоченного потока заряженных частиц: он проходит через тот участок цепи, в котором сопротивление имеет минимальное значения. В разное время производители приборов и комплектующих пытались бороться с этим и обезопасить человека от вредного или даже смертельного воздействия тока. Но в конечном итоге наиболее простым и надежным остается заземление.

    Заземление применяется на промышленных предприятиях и в загородных домах. Особую роль оно играет в случае, когда мощность прибора превышает критические значения. Человеку достаточно получить удар силой 0.1 ампера, чтобы гарантированно погибнуть. Также не стоит забывать, что даже исправное оборудование может служить источником опасности. Это может случиться из-за разряда молнии и по некоторым другим причинам. Следовательно, к вопросу установки заземления стоит подходить ответственно и учитывать все нюансы.

    Испытания заземления

    Существует множество споров по поводу монтажа заземления и норм растекания тока по нему. Но в одном специалисты сходятся абсолютно единогласно — проверять качество установленного контура должен проверять специалист. Эта процедура позволит быть уверенным с правильном монтаже заземления в доме и позволит обезопасить себя и близких от опасного воздействия электрического тока. Испытания проводятся как на предприятиях, где часто работают генераторы и двигатели высокой мощности, так и в частных домах — измерение сопротивления заземления делается одним и тем же способом.

    Существует две основных разновидности испытаний: приемо-сдаточные и эксплуатационные. Первые проводятся в случаях, когда установка (или участок сети) уже полностью смонтированы и готовы к непосредственному использованию. Перед тем, как измерить сопротивление заземления, определяют, готов ли контур к поглощению токов в случае необходимости и соответствуют ли его параметры заявленным требованиям. Помимо всего прочего, необходимо регулярно контролировать, чтобы установленное заземление не теряло своих свойств с течением времени. Для этого проводятся эксплуатационные испытания — специалист проверяет готовый участок сети, который уже используется. Для осуществления такой процедуры нужно освободить сеть от потребителей, так что весь процесс требует небольшой подготовки.

    Чем измеряют заземление

    Для измерения этой величины применяется омметр — прибор, который изменяет сопротивление. При этом устройств для определения сопротивления заземления должны иметь определенные характеристики. Самая главная: очень низкая проводимость на входе. Диапазон измерений у таких приборов крайне небольшой: обычно он составляет от 1 до 1000 Ом. Точность измерения в аналоговых приборах не превышает 0.5–1 Ом, а в цифровых — до 0.1 Ома.

    Несмотря на повальное распространение китайских и европейских приборов, самым популярным остается М416, разработанный еще в СССР. Устройство имеет четыре диапазона измерения: от 0 до 10 Ом, от 0.5 до 50, от 2 до 200 и от 100 до 1000. Работает прибор от трех «пальчиковых» батареек. Несмотря на это, мобильным его назвать трудно — размеры корпуса не слишком комфортны.

    Более продвинутой версией является Ф4103 — промышленный омметр с большим входным сопротивлением. Он еще менее транспортабельный, но имеет большее количество диапазонов измерения. Большой плюс такого прибора: работа с огромным диапазоном сигналов (от постоянного и пульсирующего тока — до переменного с частотой 300 Гц). Также порадует пользователя и диапазон рабочих температур: от –25 до 55 градусов по Цельсию.

    Как нужно измерять сопротивление

    Существует два документа, которые регламентируют нормы сопротивления заземления в контуре и другие показатели. Первый — ПУЭ (Правила устройства электроустановок), на которые опираются при проведении приемо-сдаточного контроля. Эксплуатационные замеры же должны соответствовать Правилам технической эксплуатации электроустановок потребителей (ПТЭЭП).

    В обеих сводах правил существует разделение контуров на несколько типов — их нужно учесть до того, как измерить сопротивление заземления. Они отличаются в зависимости от напряжения, которое используется в сети и разновидности цепи. Всего имеется три типа контуров:

    1. Для подстанций и пунктов распределения, в которых напряжение не превышает 1000 вольт (вне зависимости от того, используется в сети переменный ток или постоянный).
    2. Для воздушных ЛЭП (линий электропередач), которые передают ток напряжением менее 1000 вольт.
    3. Для электроустановок с таким же максимально допустимым напряжением, использующимся в промышленных или бытовых целях.

    Нормы для каждого из типов

    Для того, чтобы понять, какие нормативные и эксплуатационные показатели должны быть для каждого из типов:

    1. Для электрических установок. Проводить измерения сопротивления заземления нужно в непосредственной близости к подстанции. В зависимости от нагрузки, этот показатель может составлять 60, 30 или 15 Ом. Также стоит учитывать естественные заземлители — для них эти величины должны равняться 8, 4 или 2 Ома соответственно. Все три величины зависят от напряжения в сети. 60 и 8 Ом допускаются для однофазной сети в 200 вольт. 30 и 4 Ом — для трехфазной с напряжением 380 вольт. Минимальные значения (15 и 2 Ома) — для 660 вольт. В ходе эксплуатации сопротивление заземляющего контура также не должно падать ниже показателей, описанных в абзаце выше.
    2. Для пункта распределения или подстанции. Для установок с напряжением выше 100 киловольт (100 тысяч вольт) проводимость заземления при сдаче сети и при ее эксплуатации также остается неизменной и составляет 0.5 Ома. При этом обязательными требованиями при проверке являются глухой тип заземления и подключенная к нейтральному контуру. Также существуют нормы и для менее мощных установок, в которых напряжение лежит в пределах между 3 и 35 киловольт. В таком случае нужно 250 делить на расчетный ток замыкания в землю — результирующее значение будет необходимым сопротивлением в Омах. Показатель, согласно ПТЭЭП, не должен превышать 10 Ом в любом случае.
    3. Для воздушных линий электропередач. Рассчитывается в зависимости от проводимости грунта, на котором стоят опоры ЛЭП:
    • для грунта с удельным сопротивлением менее 100 Ом на метр — 10 Ом;
    • с удельным сопротивлением 100…500 Ом на метр — 15 Ом;
    • с удельным сопротивлением 500…1000 Ом на метр — 20 Ом;
    • с удельным сопротивлением 1000…5000 Ом на метр — 30 Ом.

    Для ЛЭП с напряжением тока менее 1000 вольт — до 30 Ом (для опор с защитой от попадания молнии). В ином случае сопротивление должно быть 60, 30 или 15 Ом для сетей с напряжением до 660, 380 или 220 вольт соответственно.

    От чего зависит сопротивление заземления

    Как уже говорилось выше, у тока есть одна важная особенность — он течет по тому участку цепи, который меньше всего этому сопротивляется. Сама величина сопротивления зависит от множества факторов:

    1. Материала. Ряд материалов имеет особую (атомарную) структуру, которая подразумевает наличие большого числа свободных электронов. Если такие материалы попадают в действие любого магнитного поля или покдлючаются к источнику питания, то легко проводят электрический ток. В своем большинстве это утверждение относится к металлам. Другие материалы не имеют свободных электронов и их сопротивление току крайне высоко. Если напряжение (сила, «толкающая» электроны) ниже допустимого значения, то проводимость будет равняться нулю или крайне малым значениям. При превышении показателя произойдет пробой и образовавшийся нагар будет иметь свойства проводника. Логично, что материалом для заземления могут быть именно только представители первой группы материалов — именно она обеспечивает минимальное сопротивление.
    2. Его температуры. Темпатура определяет, насколько быстро электроны передвигаются внутри материала. Следовательно, чем ниже она у проводника, тем лучше он проводит заряд. Обратная зависимость тоже носит характер прямой пропорции — после ее повышения его сопротивление будет падать. Расчет сопротивления заземления должен производиться с учетом этого параметра.
    3. Наличия примесей. Основная часть проводников делается из меди. Старые провода изготавливаливались из алюминия, но такие решения имеют сразу несколько недостатков. К сожалению, кабеля и провода из этого материала быстрее перегреваются и плавятся, да и сопротивление промышленно добываемого алюминия ниже, чем таковое у меди. Химически чистый же металл является лучшим проводником, превосходя по проводимости даже серебро. Дело в примесях: они имеют гораздо более высокие показатели сопротивления. Этот же момент стоит учитывать при расчете заземления.

    Понятное дело, что в идеале сопротивление должно быть минимальным — для этого нужно использовать медный контур большого сечения. Но дело в том, что медь быстро окисляется, да и стоимость такого решения будет крайне высокой. Следовательно, были разработаны нормы для минимального порога заземления. Этот показатель не нужно превышать для того, чтобы в нужный момент под нагрузкой контур выполнил возложенную на него функцию и отвел заряд в землю.

    Формула расчета

    Формула расчета сопротивления заземления одиночного вертикального заземлителя:

    где:
    ρ — сопротивление грунта на единицу длины (Ом×м)
    L — протяженность заземлителя (в метрах)
    d — ширина заземлителя (в метрах)
    T — расстояние от поверхности земли до середины заземлителя (в метрах)

    Для электролитического заземления:

    Формула расчета сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:

    ρ — сопротивление грунта на единицу длины (Ом×м);
    L — протяженность заземлителя (в метрах);
    d — ширина заземлителя (в метрах);
    T — расстояние от поверхности земли до середины заземлителя (в метрах);
    С — относительное содержание электролита в окружающем грунте.

    Коэффициент C варьируется от 0.5 до 0.05. Со временем он уменьшается, так как электролит проникает в грунт на больший объем, при это повышая свою концентрацию. Как правило, он составляет 0.125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0.5–1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.

    Расчетное удельное электрическое сопротивление грунта (Ом×м) — параметр, определяющий собой уровень «электропроводности» земли как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземлителя.

    Это измеряемая величина, зависящая от состава грунта, размеров и плотности прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

    Итоги и выводы

    Заземление — важный элемент электрической цепи, который обеспечивает защиту от коротких замыканий, поражения током или попадания молнии в один из ее участков. Ключевым показателем здесь является сопротивление: чем оно меньше, чем больше тока «уведет» контур и тем ниже будет вероятность серьезного удара или повреждения оборудования. Сопротивление заземления регламентируется двумя документами: ПУЭ и ПТЭЭП. Первый используется для приема только что сданного участка сети, второй — для контроля уже эксплуатируемого участка.

    Нельзя пренебрегать нормами контроля, которые призваны проверить качество заземления и работу контура в условиях полной нагрузки. Процедуры производятся как непосредственно после создания цепи, так и в процессе ее использования. Частота проверок зависит от нагрузки на сети и целей, для которых используется контур. Нормы сопроивления при этом вовсе не отличаются. Различают три типа норм: для линий электропередач, трансформаторов и электрических установок. С повышением рабочего напряжения по экспоненте возрастает максимальная величина сопротивления. Также учитывается и ряд специфических показателей (например, удельная проводимость грунта). Исходя из нее можно получить максимальное регламентированное сопротивление.

    Основными способами для увеличения эффективности работы заземлителя является использование разных конфигураций проводника. Ключевая задача заключается в том, чтобы предельно повысить площадь прямого контакта контура с землей. Для этого используется один или несколько проводников. В последнем случае их могут соединять как последовательно, так и параллельно.

    Также для замера сопротивления контура заземления важно знать и поправочные коэффициенты — например, при вычислении минимально допустимого сопротивления заземления учитывается также удельное содержание материала в грунте и сопротивление повторного заземления. Для получения этого показателя нужно использовать специальное оборудование.

    Видео по теме

  • Оцените статью
    Добавить комментарий